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1 Introduction to Real-Time Workshop® Technology

1-2

Applications of Real-Time Workshop Technology

You have a variety of ways for applying Real-Time Workshop technology with
the Real-Time Workshop® and Real-Time Workshop® Embedded Coder™
products. For an introduction, in the Real-Time Workshop getting started
information, see the following topics:

®* “What You Can Accomplish Using Real-Time Workshop Technology”

* “How the Technology Can Fit Into Your Development Process”

* “How You Can Apply the Technology to the V-Model for System
Development”



Finding Information On How To Meet Your Goals

Finding Information On How To Meet Your Goals

The following tables list goals that you might have, as you apply Real-Time
Workshop technology, and where to find guidance on how to meet those
goals. Each table focuses on goals that pertain to a step of the V-model for
system development.

® Documenting and Validating Requirements on page 1-3

® Developing a Model Executable Specification on page 1-6

® Developing a Detailed Software Design on page 1-9

® Generating the Application Code on page 1-15

¢ Integrating and Verifying Software on page 1-20

¢ Integrating, Verifying, and Calibrating System Components on page 1-25

Documenting and Validating Requirements

Goals

Related Product
Information

Demos

Capture requirements in
a document, spreadsheet,
data base, or requirements
management tool

Simulink® Report Generator™
documentation

Third-party vendor tools

such as Microsoft® Word,
Microsoft® Excel®, raw HTML,
or IBM®Rational® DOORS®

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

Simulink® Verification and
Validation™

“Managing Model
Requirements” in the Simulink
Verification and Validation
documentation

Bidirectional tracing in
Microsoft Word, Microsoft
Excel, HTML, and Telelogic®
DOORS

slvnvdemo_fuelsys_docreq



http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
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Documenting and Validating Requirements (Continued)

Goals

Related Product
Information

Demos

Include requirements tags in
generated code

Simulink Verification and
Validation

“Including Requirements
Information with Generated
Code” in the Simulink
Verification and Validation
documentation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop
Embedded Coder

“Tracing Generated Code” on
page 42-3

“Verifying Generated

Code” in the Real-Time

Workshop Embedded Coder
documentation

rtwdemo_hyperlinks

Verify, refine, and test concept
model in non-real time on a
host system

Developing Models for Code
Generation on page 1

“Developing Models for Code
Generation” in the Real-Time

Workshop Embedded Coder
documentation

“Running Simulations” and
“Accelerating Models” in the
Simulink® documentation

rtwdemo_f14
rtwdemo_fuelsys



http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/simverification/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

Finding Information On How To Meet Your Goals

Documenting and Validating Requirements (Continued)

Goals

Related Product
Information

Demos

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with
varying data sets, interactively
or programmatically with
scripts, without rebuilding the
model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and

an environment or plant that
requires variable-step solvers
and zero-crossing detection

Chapter 41, “Testing and
Refining Concept Models
With Standalone Rapid
Simulations”

Chapter 36, “Communicating
With Code Executing on a
Target System Using Simulink
External Mode”

rtwdemo_rsim_param_survey_

script
rtwdemo_rsim_batch_script
rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

SystemTest™
SystemTest documentation

MATLAB® Distributed
Computing Server™
documentation

Parallel Computing Toolbox™
documentation

1-5


http://www.mathworks.com/products/systemtest/

Introduction to Real-Time Workshop® Technology

1-6

Developing a Model Executable Specification

Goals

Related Product
Information

Demos

Produce design artifacts for
algorithms that you develop
in MATLAB® code for reviews
and archiving

MATLAB® Report Generator™

“MATLAB Report Generator”
documentation

Produce design artifacts from
Simulink and Stateflow®
models for reviews and
archiving

Simulink Report Generator

“Simulink Report Generator”
System Design Description
Report

rtwdemo_codegenrpt

Add one or more components
to another environment for
system simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model
in non-real time

Test a concept model

Chapter 43, “Testing and
Refining a Model With Rapid
Prototyping”

Schedule generated code

Chapter 5, “Scheduling
Considerations” in the
Real-Time Workshop
documentation

“Handling Asynchronous
Events” on page 5-34 in
the Real-Time Workshop
documentation

rtwdemos, select Multirate
Support folder

Specify function boundaries of
systems

“Creating Subsystems” on
page 3-37 in the Real-Time
Workshop documentation

rtwdemo_atomic
rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_export_functions



http://www.mathworks.com/products/ML_reportgenerator/
http://www.mathworks.com/products/SL_reportgenerator/
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Developing a Model Executable Specification (Continued)

Goals Related Product Demos
Information

Specify components and in the Real-Time Workshop rtwdemo_mdlref_top

boundaries for design and documentation

incremental code generation

Specify function interfaces

so that external software can
compile, build, and invoke the
generated code

Real-Time Workshop
Embedded Coder

“Controlling Generation of
Function Prototypes” and
“Controlling Generation of
Encapsulated C++ Model
Interfaces” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_fcnprotoctrl

Manage data packaging in
generated code for integrating
and packaging data

Real-Time Workshop
Embedded Coder

“Defining Data Representation
and Storage for Code
Generation” in the Real-Time
Workshop Embedded Coder
documentation

“Relocating Code to Another
Development Environment”
on page 24-29 (PacknGo)

rtwdemos, select Data
Packaging folder

Generate and control the
format of comments and
identifiers in generated code

Real-Time Workshop
Embedded Coder

“Customizing Comments

in Generated Code” and
“Configuring Symbols”

in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_comments
rtwdemo_symbols



http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
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Developing a Model Executable Specification (Continued)

Goals

Related Product
Information

Demos

Create a zip file that contains
generated code files, static
files, and dependent data to
build generated code in an
environment other than your
host computer

“Relocating Code to Another
Development Environment”
on page 24-29 (PacknGo)

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

Real-Time Workshop
Embedded Coder

“Creating and Using
Host-Based Shared
Libraries” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_shrlib

Refine component and
environment model designs by
rapidly iterating between
algorithm design and
prototyping

Verify whether a component
can adequately control a
physical system in non-real
time

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware

“Rapid Prototyping a
Real-Time System” on page
43-7

Developing Models for Code
Generation on page 1

“Developing Models for Code
Generation” in the Real-Time
Workshop Embedded Coder
documentation

“Profiling Code Performance”
on page 42-7

rtwdemo_profile



http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
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Developing a Model Executable Specification (Continued)

Goals

Related Product
Information

Demos

Generate code for rapid
prototyping

Chapter 18, “Selecting and
Configuring a Target ”

Real-Time Workshop
Embedded Coder

“Developing Models for Code
Generation” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 33, “Interfacing With
a Real-Time Operating System

”»

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

xPC Target™

xPC Target documentation

help xpcdemos

Generate code for rapid
prototyping in soft real time,
using PCs

Real-Time Windows Target™

Real-Time Windows Target
documentation

rtvdp (and others)

Developing a Detailed Software Design

Goals

Related Product Information

Demos

Refine a model design for
representation and storage of
data in generated code

Defining Data Representation and

Storage for Code Generation on
page 1
“Relocating Code to Another

Development Environment” on
page 24-29 (PacknGo)



http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/
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Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Select a deployment code
format

Chapter 18, “Selecting and
Configuring a Target ”

Real-Time Workshop Embedded
Coder

“Developing Models for Code
Generation” and “Generating Code
That Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder

documentation

Chapter 33, “Interfacing With a
Real-Time Operating System ”

rtwdemo_counter
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Specify target hardware
settings

Chapter 18, “Selecting and
Configuring a Target ”

rtwdemo_targetsettings

Design model variants

“Using Model Reference Variants”

Specify fixed-point algorithms
in Simulink, Stateflow, and
Embedded MATLAB™

Simulink® Fixed Point™

“Data Types and Scaling” and
“Code Generation” in the Simulink
Fixed Point documentation

rtwdemo_fixptH
rtwdemo_fuelsys fixpt

Convert a floating-point model
or subsystem to a fixed-point
representation

Simulink Fixed Point

“Fixed-Point Advisor”’ in
the Simulink Fixed Point
documentation

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

Simulink Fixed Point

“Automatic Scaling” in
the Simulink Fixed Point
documentation

fxpdemo_feedback

1-10
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Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Create or rename data
types specifically for your
application

Real-Time Workshop Embedded
Coder

“Code Generation with
User-Defined Data Types” in the
Real-Time Workshop Embedded
Coder documentation

rtwdemo_udt

Control the format of
identifiers in generated
code

Real-Time Workshop Embedded
Coder

“Configuring Symbols” in the
Real-Time Workshop Embedded
Coder documentation

rtwdemo_symbols

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

Real-Time Workshop Embedded
Coder

“Creating and Using Custom
Storage Classes” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_cscpredef

Create a data dictionary for a
model

Real-Time Workshop Embedded
Coder

“Managing Data Definitions
and Declarations With the Data
Dictionary” in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or safe data access

Real-Time Workshop Embedded
Coder

“Inserting Comments and Pragmas
in Generated Code” in the
Real-Time Workshop Embedded
Coder documentation

rtwdemo_memsec

1-11
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http://www.mathworks.com/products/rtwembedded/
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Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Assess and adjust model

configuration parameters
based on the application

and an expected run-time
environment

Preparing Models for Code
Generation on page 1

“Preparing Models for Code
Generation” in the Real-Time
Workshop Embedded Coder

documentation

rtwdemo_f14

Check a model against basic
modeling guidelines

“Consulting the Model Advisor” in
the Simulink documentation

rtwdemo_advisori

Add custom checks to the
Simulink Model Advisor

Simulink Verification and
Validation

“Customizing the Model Advisor”
in the Simulink Verification and
Validation documentation

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Consulting the Model Advisor” in
the Simulink documentation

Check a model against
industry standards and
guidelines (MathWorks™
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

Real-Time Workshop Embedded
Coder

“Developing Models and Code That
Comply with Industry Standards
and Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Simulink Verification and
Validation

“Model Advisor Checks” in
the Simulink Verification and
Validation documentation

rtwdemo_iec61508

1-12
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Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Obtain model coverage for
structural coverage analysis
such as MC/DC

Simulink Verification and
Validation

“Using Model Coverage” in
the Simulink Verification and
Validation documentation

cvbasic_operation

Prove properties and generate
test vectors for models

Simulink® Design Verifier™

Simulink Design Verifier
documentation

sldvdemo_cruise_control
sldvdemo_cruise_control_
verification

Generate reports of models
and software designs

MATLAB Report Generator

MATLAB Report Generator
documentation

Simulink Report Generator

Simulink Report Generator
System Design Description Report
documentation

rtwdemos_codegenrpt

Conduct reviews of your
model and software designs
with coworkers, customers,
and suppliers who do not have
Simulink available

Simulink Report Generator

“Exporting Simulink Models to
Web Views” and “Comparing XML
Files Exported from Simulink
Models”in the Simulink Report
Generator documentation

slxml_sfcar
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Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis
and sizing based on your
embedded processor

Assess the feasibility
of the algorithm based
on integration with the
environment or plant
hardware

“Rapid Prototyping On a Target
System”

Embedded IDE Link™
“Embedded IDE Link”

documentation
Target Support Package™

“Target Support Package”
documentation

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“About System Simulation” on
page 43-4

Chapter 18, “Selecting and
Configuring a Target ”

Real-Time Workshop Embedded
Coder

“Developing Models for Code
Generation” and “Generating Code
That Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 33, “Interfacing With a
Real-Time Operating System ”

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_async
rtwdemo_osek
rtwdemo_autosar
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Finding Information On How To Meet Your Goals

Developing a Detailed Software Design (Continued)

Goals

Related Product Information

Demos

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Integrating Existing C Functions
into Simulink Models with the
Legacy Code Tool” in the Simulink
documentation

Integrating External Code With
Generated C and C++ Code on
page 1

“Integrating External Code and
Generated C and C++ Code” in the

Real-Time Workshop Embedded
Coder documentation

rtwdemos, select Custom
Code folder

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

Embedded IDE Link

“Embedded IDE Link”
documentation

Target Support Package

“Target Support Package”
documentation

See help for link and target
support package products

Generating the Application Code

Goals

Related Product
Information

Demos

Optimize generated ANSI®

C code for production (for
example, disable floating-point
code, remove termination

and error handling code, and
combine code entry points into
single functions)

Chapter 25, “Optimizing
Generated Code”

Real-Time Workshop
Embedded Coder

“Preparing Models for Code
Generation” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemos, select
Optimization folder
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Generating the Application Code (Continued)

Goals

Related Product
Information

Demos

Optimize code for a specific
run-time environment, using
specialized function libraries

Real-Time Workshop
Embedded Coder

“Replacing Math Functions
and Operators Using Target
Function Libraries” in

the Real-Time Workshop
Embedded Coder
documentation

rtwdemo_tfl_script

Control the format and style of
generated code

Real-Time Workshop
Embedded Coder

“Controlling Code

Style” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_parentheses

Control the comments inserted
into generated code

Real-Time Workshop
Embedded Coder

“Customizing Comments
in Generated Code” in
the Real-Time Workshop
Embedded Coder

rtwdemo_comments

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing Post Code
Generation Build Processing”
on page 26-14

rtwdemo_buildinfo

Include requirements tags in
generated code

Simulink Verification and
Validation

“Including Requirements
Information with Generated
Code” in the Simulink
Verification and Validation
documentation

rtwdemo_requirements
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http://www.mathworks.com/products/simverification/
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Finding Information On How To Meet Your Goals

Generating the Application Code (Continued)

Goals

Related Product
Information

Demos

Trace model blocks and
subsystems to generated code
and vice versa

Real-Time Workshop
Embedded Coder

“Generating Reports for Code
Reviews and Traceability
Analysis”, “Tracing Code

To Model Objects Using
Hyperlinks”,“Tracing Blocks
to Generated Code”, and
“Developing Models and
Code That Comply with
Industry Standards and
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_comments
rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

Integrating External Code
With Generated C and C++
Code on page 1

“Integrating External Code
and Generated C and C++
Code” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemos, select Custom
Code folder
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Generating the Application Code (Continued)

Goals

Related Product
Information

Demos

Verify generated code for
MISRA C®! and other run-time
violations

Real-Time Workshop
Embedded Coder

“Developing Models and Code
That Comply with MISRA C
Guidelines” in the Real-Time
Workshop Embedded Coder
documentation

Documentation for PolySpace®
Products

rtwdemo_polyspace

Protect the intellectual
property of component model
design and generated code

Generate a binary file (shared
library)

Chapter 7, “Protecting
Intellectual Property in
Shared Model Components”

Generate a MEX-file
S-function for a model or
subsystem so that it can be
shared with a third-party
vendor

“Creating Component Object
Libraries and Enhancing
Simulation Performance” on
page 3-92

Generate a shared library
for a model or subsystem so
that it can be shared with a
third-party vendor

“Creating and Using
Host-Based Shared
Libraries” in the Real-Time
Workshop Embedded Coder
documentation

1. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of

the MISRA® Consortium.
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Finding Information On How To Meet Your Goals

Generating the Application Code (Continued)

Goals

Related Product
Information

Demos

Test generated production
code with an environment
or plant model to verify a
successful conversion of the
model to code

Chapter 44, “Verifying
Generated Source Code
With Software-In-the-Loop
Simulation”

“Verifying Generated

Source Code With
Software-In-the-Loop
Simulation” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_sil pil

Write or generate an
S-function wrapper for
calling your generated source
code from a model running in
Simulink

“Writing Wrapper
S-Functions” on page 31-12

Real-Time Workshop
Embedded Coder

“Generating S-Function
Wrappers” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_sil_ pil

Set up and run SIL tests on
your host computer

Chapter 44, “Verifying
Generated Source Code
With Software-In-the-Loop
Simulation”

Real-Time Workshop
Embedded Coder

“Verifying Generated

Source Code With
Software-In-the-Loop
Simulation” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_sil pil
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Integrating and Verifying Software

Goals

Related Product
Information

Demos

Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

Integrating External Code
With Generated C and C++
Code on page 1

“Integrating External Code
and Generated C and C++
Code” in the Real-Time
Workshop Embedded Coder

documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for generated C code data
structures

Setting Up Generated Code To
Interface With Components in
the Run-Time Environment on
page 1

“Setting Up Generated Code
To Interface With Components
in the Run-Time Environment”
in the Real-Time

Workshop Embedded Coder
documentation

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated code

Real-Time Workshop
Embedded Coder

“Controlling Generation

of Function Prototypes”

in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_fcnprotoctrl
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Finding Information On How To Meet Your Goals

Integrating and Verifying Software (Continued)

Goals

Related Product
Information

Demos

Export virtual and
function-call subsystems

Real-Time Workshop
Embedded Coder

“Exporting Function-Call

Subsystems” in the Real-Time

Workshop Embedded Coder
documentation

rtwdemo_export_functions

Include target-specific code

Real-Time Workshop
Embedded Coder

“Replacing Math Functions
and Operators Using Target
Function Libraries” in

the Real-Time Workshop
Embedded Coder

rtwdemo_tfl_script

documentation
Customize and control the Chapter 24, “Building rtwdemo_buildinfo
build process Executables”

Create a zip file that contains
generated code files, static
files, and dependent data to
build the generated code in an
environment other than your
host computer

“Relocating Code to Another
Development Environment”
on page 24-29 (PacknGo)

rtwdemo_buildinfo

Integrate all software
components as a complete
system for testing in the target
environment

“Verifying a Component
by Building a Complete
Real-Time Target
Environment” in the
Real-Time Workshop
Embedded Coder

documentation
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Integrating and Verifying Software (Continued)

Goals

Related Product
Information

Demos

Generate source code for
integration with specific
production environments

Chapter 18, “Selecting and
Configuring a Target ”

Real-Time Workshop
Embedded Coder

“Developing Models for
Code Generation” and
“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 33, “Interfacing With
a Real-Time Operating System

”»

rtwdemo_async
rtwdemo_osek
rtwdemo_autosar

Integrate code for a specific
run-time environment, using
specialized function libraries

Real-Time Workshop
Embedded Coder

“Replacing Math Functions
and Operators Using Target
Function Libraries” in

the Real-Time Workshop
Embedded Coder
documentation

rtwdemo_tfl script

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customizing Post Code
Generation Build Processing”
on page 26-14

rtwdemo_buildinfo
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Finding Information On How To Meet Your Goals

Integrating and Verifying Software (Continued)

Goals

Related Product
Information

Demos

Integrate existing externally
written code with code
generated for a model

“Integrating Existing C
Functions into Simulink
Models with the Legacy
Code Tool” in the Simulink
documentation

Integrating External Code
With Generated C and C++
Code on page 1

“Integrating External Code
and Generated C and C++
Code” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemos, select Custom
Code folder

Connect to data interfaces
for the generated C code data
structures

Setting Up Generated Code To
Interface With Components in
the Run-Time Environment on
page 1

“Setting Up Generated Code
To Interface With Components
in the Run-Time Environment”
in the Real-Time

Workshop Embedded Coder

rtwdemo_capi
rtwdemo_asap2

documentation
Customize and control the Chapter 24, “Building rtwdemo_buildinfo
build process Executables”

Create a zip file that contains
generated code files, static
files, and dependent data
needed to build the generated
code in an environment other
than your host computer

“Relocating Code to Another
Development Environment”
on page 24-29 (PacknGo)

rtwdemo_buildinfo
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Integrating and Verifying Software (Continued)

Goals Related Product Demos
Information

Schedule the generated code Chapter 5, “Scheduling rtwdemos, select Multirate
Considerations” Support folder

Verify object code files in a
target environment

“Verifying Compiled

Object Code with
Processor-in-the-Loop
Simulation” in the Real-Time
Workshop Embedded Coder
documentation

rtwdemo_pil

Set up and run PIL tests on
your target system

“Verifying Compiled

Object Code with
Processor-in-the-Loop
Simulation” in the Real-Time
Workshop Embedded Coder
documentation

“Embedded IDE Link”
documentation

rtwdemo_pil
rtwdemo_custom_pil
rtwdemo_rtiostream

See the list of supported
hardware for the Real-Time
Workshop Embedded Coder
product on the MathWorks
Web site, and then find a
demo for the related product of
interest



http://www.mathworks.com/products/rtwembedded/supportedio.html
http://www.mathworks.com/products/rtwembedded/supportedio.html

Finding Information On How To Meet Your Goals

Integrating, Verifying, and Calibrating System Components

Goals

Related Product
Information

Demos

Integrate the software and
1ts microprocessor with the
hardware environment for
the final embedded system
product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

Chapter 45, “Verifying
a System With
Hardware-In-the-Loop
Simulation”

Generate source code for HIL
testing

Chapter 18, “Selecting and
Configuring a Target ”

Real-Time Workshop
Embedded Coder

“Developing Models for
Code Generation” and
“Generating Code That
Complies with AUTOSAR
Standards” in the Real-Time
Workshop Embedded Coder
documentation

Chapter 33, “Interfacing With
a Real-Time Operating System

”»”

rtwdemo_f14

Conduct hard real-time HIL
testing using PCs

xPC Target

xPC Target documentation

help xpcdemos
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Integrating, Verifying, and Calibrating System Components (Continued)

Goals

Related Product
Information

Demos

Ensure ECU is properly tuned
for its intended use

Setting Up Generated Code To
Interface With Components in
the Run-Time Environment on
page 1

“Setting Up Generated Code
To Interface With Components
in the Run-Time Environment”
in the Real-Time

Workshop Embedded Coder
documentation

Generate ASAP2 data files

Chapter 35, “Generating
Model Information for
Host-Based ASAP2 Data
Measurement and Calibration”

rtwdemo_asap2

Generate C API data interface
files

Chapter 34, “Interacting with
Target Application Signals
and Parameters Using the C
APT”

rtwdemo_capi
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Developing Models for Code
Generation

® Chapter 2, “Setting Up Your Modeling Environment”

® Chapter 3, “Architecture Considerations”

® Chapter 4, “Block Support Considerations”

® Chapter 5, “Scheduling Considerations”

e Chapter 6, “Simulation Considerations That Affect Code Generation”

® Chapter 7, “Protecting Intellectual Property in Shared Model
Components”

e Chapter 8, “Stateflow Considerations for Event-Driven Applications”






Setting Up Your Modeling
Environment

When developing a system, it is important to use the correct combination of
products to model each system component based on the domain to which it
applies.



2 Setting Up Your Modeling Environment

The following table guides you to information and demos that pertain to use
of Real-Time Workshop technology to meet goals for specific domains.

Goals

Related Product Information

Demos

Specify algorithms as
MATLAB code

Embedded MATLAB
documentation

rtwdemo_emlcbasicdemo

Specify algorithms graphically
as Simulink models for controls
design

“Creating a Model” in the
Simulink documentation

rtwdemo_f14

Call Embedded MATLAB
functions in Simulink

“MATLAB Function Blocks” in
the Simulink documentation

rtwdemo_eml_aero_radar

Model event-driven designs,
such as finite state machines
and truth tables, in Simulink
for fault detection, modes, and
conditional logic

Stateflow

“Creating Stateflow Charts” in
the Stateflow documentation

rtwdemo_fuelsys

Model signal processing filters
(for example, fast Fourier
transform (FFT) and infinite
impulse response (IIR)) in
Simulink

Signal Processing Blockset™

Signal Processing Blockset
documentation

rtwdemo_lmsadeq

Model video processing models
in Simulink

Video and Image Processing
Blockset™

Video and Image Processing
Blockset documentation

Create physical models or
plant models in Simulink

Simscape™

Simscape documentation

Model other domains and
applications

All products supported by code
generation
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Architecture Considerations

® “Laying Out the Model Architecture” on page 3-2

® “Creating Subsystems” on page 3-37

e “Creating Model Components” on page 3-51

® “Creating Reusable Components” on page 3-73

® “Supporting Shared Utility Directories in the Build Process” on page 3-88

¢ “Creating Component Object Libraries and Enhancing Simulation
Performance” on page 3-92

¢ “Combining Multiple Models” on page 3-114



3 Architecture Considerations

Laying Out the Model Architecture

In this section...

“Model Execution” on page 3-2
“Rapid Prototyping Program Framework” on page 3-22
“Embedded Program Framework” on page 3-34

Model Execution

“Introduction” on page 3-2

“Models for Non-Real-Time Single-Tasking Systems” on page 3-4
“Models for Non-Real-Time Multitasking Systems” on page 3-5
“Models for Real-Time Single-Tasking Systems” on page 3-6
“Models for Real-Time Multitasking Systems” on page 3-8

“Models for Multitasking Systems that Use Real-Time Tasking Primitives”
on page 3-10

“Program Timing” on page 3-11
“Program Execution” on page 3-13
“External Mode Communication” on page 3-13

“Data Logging in Single-Tasking and Multitasking Model Execution” on
page 3-13

¢ “Rapid Prototyping and Embedded Model Execution Differences” on page

3-14

e “Rapid Prototyping Model Functions” on page 3-15
¢ “Embedded Model Functions” on page 3-21

Introduction

Before looking at the two styles of generated code, you need to have a
high-level understanding of how the generated model code is executed. The
Real-Time Workshop software generates algorithmic code as defined by your




Laying Out the Model Architecture

model. You can include your own code in your model by using S-functions.
S-functions can range from high-level signal manipulation algorithms to
low-level device drivers.

The Real-Time Workshop product also provides a run-time interface that
executes the generated model code. The run-time interface and model code
are compiled together to create the model executable. The next figure shows a
high-level object-oriented view of the executable.

Execution driver for model code,
operating system interface routines,
I/0O dependent routines,

solver and data logging routines.

Model code
and S-functions

Run-Time Interface

The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not
change between the rapid prototyping and embedded style of generated
code. The following sections describe model execution for single-tasking and
multitasking environments both for simulation (non-real-time) and for real
time. For most models, the multitasking environment will provide the most
efficient model execution (that is, fastest sample rate).

The following concepts are useful in describing how models execute. Function
names used in ERT and GRT targets are shown, followed by the comparable
GRT-compatible calls in parentheses.

¢ Initialization: model initialize (MdlInitializeSizes,
MdlInitializeSampleTimes, Md1Start) initializes the run-time interface
code and the model code.

¢ ModelOutputs: Calling all blocks in your model that have a sample hit
at the current time and having them produce their output. model output
(Md10utputs) can be done in major or minor time steps. In major time
steps, the output is a given simulation time step. In minor time steps, the

3-3
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run-time interface integrates the derivatives to update the continuous
states.

ModelUpdate: model update (MdlUpdate) calls all blocks in your model
that have a sample hit at the current point in time and has them update
their discrete states or similar type objects.

ModelDerivatives: Calling all blocks in your model that have continuous
states and having them update their derivatives. model derivatives
is only called in minor time steps.

ModelTerminate: model terminate (MdlTerminate) terminates the
program if it is designed to run for a finite time. It destroys the real-time
model data structure, deallocates memory, and can write data to a file.

The identifying names in the preceding list (ModelOutputs, and so on) identify
functions in pseudocode examples shown in the following sections.

“Models for Non-Real-Time Single-Tasking Systems” on page 3-4
“Models for Non-Real-Time Multitasking Systems” on page 3-5
“Models for Real-Time Single-Tasking Systems” on page 3-6
“Models for Real-Time Multitasking Systems” on page 3-8

“Models for Multitasking Systems that Use Real-Time Tasking Primitives”
on page 3-10

For a complete set of correspondences between GRT and ERT function
identifiers, see the table Identifiers for Real-Time Model Data Structure
Variants on page 3-30.

Models for Non-Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model for a non-real-time
single-tasking system.

3-4

main()
{
Initialization
While (time < final time)
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
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ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for
-- models with continuous states.
ModelDerivatives
Do 0 or more
ModelOutputs
ModelDerivatives
EndDo -- Number of iterations depends upon the solver
Integrate derivatives to update continuous states.
EndIntegrate
EndWhile
Termination

}

The initialization phase begins first. This consists of initializing model states
and setting up the execution engine. The model then executes, one step at a
time. First ModelOutputs executes at time ¢, then the workspace I/0 data is
logged, and then ModelUpdate updates the discrete states. Next, if your model
has any continuous states, ModelDerivatives integrates the continuous

states’ derivatives to generate the states for time ¢,,,, =¢+h, where A is the

step size. Time then moves forward to ¢,,,, and the process repeats.

During the ModelOutputs and ModelUpdate phases of model execution, only
blocks that reach the current point in time execute.

Models for Non-Real-Time Multitasking Systems

The pseudocode below shows the execution of a model for a non-real-time
multitasking system.

main()
{
Initialization
While (time < final time)
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states, and root
-- outports.
ModelUpdate (tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.

3-5
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ModelDerivatives
Do O or more
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
For i=1:NumTids
ModelOutputs(tid=i) -- Major time step.
ModelUpdate(tid=i) -- Major time step.
EndFor
EndWhile
Termination

}

Multitasking operation is more complex than single-tasking execution because
the output and update functions are subdivided by the task identifier (tid)
that is passed into these functions. This allows for multiple invocations of
these functions with different task identifiers using overlapped interrupts, or
for multiple tasks when using a real-time operating system. In simulation,
multiple tasks are emulated by executing the code in the order that would
occur if there were no preemption in a real-time system.

Multitasking execution assumes that all tasks are multiples of the base
rate. The Simulink product enforces this when you create a fixed-step
multitasking model. The multitasking execution loop is very similar to that
of single-tasking, except for the use of the task identifier (tid) argument
to ModelOutputs and ModelUpdate.

Models for Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model in a real-time
single-tasking system where the model is run at interrupt level.

rtOneStep()
{
Check for interrupt overflow
Enable "rtOneStep" interrupt
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
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ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for models
-- with continuous states.
ModelDerivatives
Do O or more
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate

}

main()
{
Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)
Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown

}
Real-time single-tasking execution is very similar to non-real-time
single-tasking execution, except that instead of free-running the code, the

rt_OneStep function is driven by a periodic timer interrupt.

At the interval specified by the program’s base sample rate, the interrupt

service routine (ISR) preempts the background task to execute the model code.

The base sample rate is the fastest in the model. If the model has continuous
blocks, then the integration step size determines the base sample rate.

For example, if the model code is a controller operating at 100 Hz, then
every 0.01 seconds the background task is interrupted. During this
interrupt, the controller reads its inputs from the analog-to-digital converter
(ADC), calculates its outputs, writes these outputs to the digital-to-analog
converter (DAC), and updates its states. Program control then returns to the
background task. All these steps must occur before the next interrupt.
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Models for Real-Time Multitasking Systems

The following pseudocode shows how a model executes in a real-time
multitasking system where the model is run at interrupt level.

rtoneStep()

{
Check for interrupt overflow
Enable "rtOneStep" interrupt

ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do O or more
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives and update continuous states.
EndIntegrate
For i=1:NumTasks
If (hit in task 1)
ModelOutputs(tid=1i)
ModelUpdate (tid=1i)
EndIf
EndFor

}

main()
{
Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)
Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown
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Running models at interrupt level in a real-time multitasking environment
1s very similar to the previous single-tasking environment, except that
overlapped interrupts are employed for concurrent execution of the tasks.

The execution of a model in a single-tasking or multitasking environment
when using real-time operating system tasking primitives is very similar to
the interrupt-level examples discussed above. The pseudocode below is for a
single-tasking model using real-time tasking primitives.

tSingleRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root
-- outports
ModelUpdate -- Major time step
Integrate -- Integration in minor time step
-- for models with continuous
-- states.
ModelDeriviatives
Do O or more
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
EndMainLoop
}

main()
{
Initialization
Start/spawn task "tSingleRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

3-9
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In

this single-tasking environment, the model executes as real-time operating

system tasking primitives. In this environment, create a single task
(tSingleRate) to run the model code. This task is invoked when a clock tick
occurs. The clock tick gives a clockSem (clock semaphore) to the model task
(tSingleRate). The model task waits for the semaphore before executing.
The clock ticks occur at the fundamental step size (base rate) for your model.

Models for Multitasking Systems that Use Real-Time Tasking
Primitives

The pseudocode below is for a multitasking model using real-time tasking
primitives.

3-10

tSubRate(subTaskSem,1i)
{
Loop:
Wait on semaphore subTaskSem.
ModelOutputs(tid=1i)
ModelUpdate (tid=1)
EndLoop
}
tBaseRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
For i=1:NumTasks
If (hit in task 1)
If task i is currently executing, then error out due to

overflow.
Do a "semGive" on subTaskSem for task i.

EndIf
EndFor
ModelOutputs(tid=0) -- major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- major time step.
Loop: -- Integration in minor time step for

-- models with continuous states.
ModelDeriviatives

Do O or more
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ModelOutputs(tid=0)
ModelDerivatives
EndDo (number of iterations depends upon the solver).
Integrate derivatives to update continuous states.
EndLoop
EndMainLoop
}
main()
{
Initialization
Start/spawn task "tSubRate".
Start/spawn task "tBaseRate".

Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this multitasking environment, the model is executed using real-time
operating system tasking primitives. Such environments require several
model tasks (tBaseRate and several tSubRate tasks) to run the model code
The base rate task (tBaseRate) has a higher priority than the subrate tasks.
The subrate task for tid=1 has a higher priority than the subrate task for
tid=2, and so on. The base rate task is invoked when a clock tick occurs. The
clock tick gives a clockSem to tBaseRate. The first thing tBaseRate does is
give semaphores to the subtasks that have a hit at the current point in time.
Because the base rate task has a higher priority, it continues to execute. Next
it executes the fastest task (tid=0), consisting of blocks in your model that
have the fastest sample time. After this execution, it resumes waiting for the
clock semaphore. The clock ticks are configured to occur at the fundamental
step size for your model.

Program Timing
Real-time programs require careful timing of the task invocations (either
by using an interrupt or a real-time operating system tasking primitive)
to ensure that the model code executes to completion before another task
invocation occurs. This includes time to read and write data to and from
external hardware.
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The next figure illustrates interrupt timing.

Sample interval is appropriate for this model code execution.

A

A A A

' Time to execute t , , > fme
' the model code ! Time available to process background tasks
Sample interval is too short for this model code execution.

A/ A A, s time

' Time to execute the model code

Task Timing

The sample interval must be long enough to allow model code execution
between task invocations.

In the figure above, the time between two adjacent vertical arrows is the
sample interval. The empty boxes in the upper diagram show an example of a
program that can complete one step within the interval and still allow time
for the background task. The gray box in the lower diagram indicates what
happens if the sample interval is too short. Another task invocation occurs
before the task is complete. Such timing results in an execution error.

Note also that, if the real-time program is designed to run forever (that is, the
final time is O or infinite so the while loop never exits), then the shutdown

code never executes.

For more information on how the timing engine works, see “Using Timers”
on page 5-70.
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Program Execution

As the previous section indicates, a real-time program cannot require 100%
of the CPU’s time. This provides an opportunity to run background tasks
during the free time.

Background tasks include operations such as writing data to a buffer or file,
allowing access to program data by third-party data monitoring tools, or using
Simulink external mode to update program parameters.

It is important, however, that the program be able to preempt the background
task at the appropriate time to ensure real-time execution of the model code.

The way the program manages tasks depends on capabilities of the
environment in which it operates.

External Mode Communication

External mode allows communication between the Simulink block diagram
and the standalone program that is built from the generated code. In this
mode, the real-time program functions as an interprocess communication
server, responding to requests from the Simulink engine.

Data Logging in Single-Tasking and Multitasking Model
Execution

The Real-Time Workshop data-logging features, described in Chapter 17,
“Enabling Instrumentation for Debugging”, enable you to save system states,
outputs, and time to a MAT-file at the completion of the model execution.
The LogTXY function, which performs data logging, operates differently in
single-tasking and multitasking environments.

If you examine how LogTXY is called in the single-tasking and multitasking
environments, you will notice that for single-tasking LogTXY is called

after ModelOutputs. During this ModelOutputs call, all blocks that have

a hit at time ¢ execute, whereas in multitasking, LogTXY is called after
ModelOutputs(tid=0), which executes only the blocks that have a hit at
time ¢t and that have a task identifier of 0. This results in differences in the
logged values between single-tasking and multitasking logging. Specifically,
consider a model with two sample times, the faster sample time having a
period of 1.0 second and the slower sample time having a period of 10.0
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seconds. At time t = k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1)
blocks execute. When executing in multitasking mode, when LogTXY is
called, the slow blocks execute, but the previous value is logged, whereas in
single-tasking the current value is logged.

Another difference occurs when logging data in an enabled subsystem.
Consider an enabled subsystem that has a slow signal driving the enable port
and fast blocks within the enabled subsystem. In this case, the evaluation of
the enable signal occurs in a slow task, and the fast blocks see a delay of one
sample period; thus the logged values will show these differences.

To summarize differences in logged data between single-tasking and
multitasking, differences will be seen when

® Any root outport block has a sample time that is slower than the fastest
sample time

® Any block with states has a sample time that is slower than the fastest
sample time

® Any block in an enabled subsystem where the signal driving the enable
port is slower than the rate of the blocks in the enabled subsystem

For the first two cases, even though the logged values are different between
single-tasking and multitasking, the model results are not different. The only
real difference is where (at what point in time) the logging is done. The third
(enabled subsystem) case results in a delay that can be seen in a real-time
environment.

Rapid Prototyping and Embedded Model Execution Differences

The rapid prototyping program framework provides a common application
programming interface (API) that does not change between model definitions.

The Real-Time Workshop Embedded Coder product provides a different
framework called the embedded program framework. The embedded program
framework provides an optimized API that is tailored to your model. When
you use the embedded style of generated code, you are modeling how you
would like your code to execute in your embedded system. Therefore, the
definitions defined in your model should be specific to your embedded targets.



Laying Out the Model Architecture

Items such as the model name, parameter, and signal storage class are
included as part of the API for the embedded style of code.

One major difference between the rapid prototyping and embedded style of
generated code is that the latter contains fewer entry-point functions. The
embedded style of code can be configured to have only one run-time function,
model_step.

Thus, when you look again at the model execution pseudocode presented
earlier in this chapter, you can eliminate the Loop...EndLoop statements,
and group ModelOutputs, LogTXY, and ModelUpdate into a single statement,
model_step.

For a detailed discussion of how generated embedded code executes, see the
Real-Time Workshop Embedded Coder documentation.

Rapid Prototyping Model Functions

The rapid prototyping code defines the following functions that interface with
the run-time interface:

® Model(): The model registration function. This function initializes the
work areas (for example, allocating and setting pointers to various data
structures) needed by the model. The model registration function calls the
MdlInitializeSizes and MdlInitializeSampleTimes functions. These
two functions are very similar to the S-function md1InitializeSizes and
mdlInitializeSampleTimes methods.

e MdlStart(void): After the model registration functions
MdlInitializeSizes and MdlInitializeSampleTimes execute, the
run-time interface starts execution by calling Md1Start. This routine is
called once at startup.

The function Md1Start has four basic sections:

= Code to initialize the states for each block in the root model that has
states. A subroutine call is made to the “initialize states” routines of
conditionally executed subsystems.

= Code generated by the one-time initialization (start) function for each
block in the model.
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= Code to enable the blocks in the root model that have enable methods,
and the blocks inside triggered or function-call subsystems residing in
the root model. Simulink blocks can have enable and disable methods.
An enable method is called just before a block starts executing, and the
disable method is called just after the block stops executing.

= Code for each block in the model that has a constant sample time.

Md1lOutputs(int_T tid): Md1lOutputs updates the output of blocks at
appropriate times. The tid (task identifier) parameter identifies the task
that in turn maps when to execute blocks based upon their sample time.
This routine is invoked by the run-time interface during major and minor
time steps. The major time steps are when the run-time interface is taking
an actual time step (that is, it is time to execute a specific task). If your
model contains continuous states, the minor time steps will be taken. The
minor time steps are when the solver is generating integration stages,
which are points between major outputs. These integration stages are used
to compute the derivatives used in advancing the continuous states. The
solver is called to updates

MdlUpdate(int T tid): MdlUpdate updates the states and work vector
state information (that is, states that are neither continuous nor discrete)
saved in work vectors. The tid (task identifier) parameter identifies the
task that in turn indicates which sample times are active, allowing you to
conditionally update only states of active blocks. This routine is invoked by
the run-time interface after the major Md10utputs has been executed. The
solver is also called, and model Derivatives is called in minor steps by
the solver during its integration stages. All blocks that have continuous
states have an identical number of derivatives. These blocks are required
to compute the derivatives so that the solvers can integrate the states.

MdlTerminate(void): Md1lTerminate contains any block shutdown code.
MdlTerminate is called by the run-time interface, as part of the termination
of the real-time program.

The contents of the above functions are directly related to the blocks in your
model. A Simulink block can be generalized to the following set of equations.
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Output y is a function of continuous state x_, discrete state x;, and input w.
Each block writes its specific equation in the appropriate section of Md10utput.

Xd+1 = fu(taxd’u)

The discrete states x, are a function of the current state and input. Each block
that has a discrete state updates its state in Md1Update.

x= [y x.,u)

The derivatives x are a function of the current input. Each block that has
continuous states provides its derivatives to the solver (for example, ode5) in
model Derivatives. The derivatives are used by the solver to integrate the
continuous state to produce the next value.

The output, vy, is generally written to the block I/O structure. Root-level
Outport blocks write to the external outputs structure. The continuous and
discrete states are stored in the states structure. The input, u, can originate
from another block’s output, which is located in the block I/O structure, an
external input (located in the external inputs structure), or a state. These
structures are defined in the model.h file that the Real-Time Workshop
software generates.

The next example shows the general contents of the rapid prototyping style of
C code written to the model.c file.
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Illﬂ'
* Version, Model options, TLC options,
* and code generation information are placed here.

*
<includes=
vold WMd1lStart{void)
{
I'I*
* State initialization code.
* Wodel start-up code - one time initialization code.
* Execute any block enable methods.
* Initialize output of any blocks with constant sample times.
*
}
vold MdlOutputs iint T tid)
{
/* Compute: y = fO0it,xc,xd,u) for each block as needed. */
}
void WMdlUpdate(int_T tid)
{
/* Compute: xd+1 = fuit,xd,u) for each block as needed. */

/* Compute: dxc = fd(t,xc,u) for each block in model derivatives
as needed. */

void Md1lTerminate(void)

/* Perform shutdown code for any blocks that
have a termination action */

The next figure shows a flow chart describing the execution of the rapid
prototyping generated code.

3-18



Laying Out the Model Architecture

Start Execution

MdIStart
MdIOutput
]
& | MdUpdate
2 |
C
2 model_Derivatives
3
(0]
x
M

MdIOutput

model_Derivatives

Integration in [ Minor Time Steps

MdITerminate

Rapid Prototyping Execution Flow Chart

Each block places code in specific Md1 routines according to the algorithm that
it is implementing. Blocks have input, output, parameters, and states, as well
as other general items. For example, in general, block inputs and outputs are
written to a block I/O structure (model B). Block inputs can also come from
the external input structure (model U) or the state structure when connected
to a state port of an integrator (model X), or ground (rtGround) if unconnected
or grounded. Block outputs can also go to the external output structure
(model Y). The next figure shows the general mapping between these items.
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External External
; Block I/O
struct model_B
model_U model_Y

< or

structs
3 rtRWork,
rtiWork,
rtPWork,
States Parameter
struct struct
model_X model_P

Data View of the Generated Code
The following list defines the structures shown in the preceding figure:

¢ Block I/O structure (model B): This structure consists of persistent block
output signals. The number of block output signals is the sum of the widths
of the data output ports of all nonvirtual blocks in your model. If you
activate block I/O optimizations, the Simulink and Real-Time Workshop
products reduce the size of the model B structure by

= Reusing the entries in the model_B structure
= Making other entries local variables

See Chapter 11, “Signal Considerations” for more information on these
optimizations.

Structure field names are determined either by the block’s output signal
name (when present) or by the block name and port number when the
output signal is left unlabeled.

® Block states structures: The continuous states structure (model X) contains
the continuous state information for any blocks in your model that have
continuous states. Discrete states are stored in a data structure called
the DWork vector (model DWork).

® Block parameters structure (model P): The parameters structure contains
all block parameters that can be changed during execution (for example,
the parameter of a Gain block).
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¢ External inputs structure (model U): The external inputs structure consists
of all root-level Inport block signals. Field names are determined by either
the block’s output signal name, when present, or by the Inport block’s name
when the output signal is left unlabeled.

¢ External outputs structure (model Y): The external outputs structure
consists of all root-level Outport blocks. Field names are determined by the
root-level Outport block names in your model.

® Real work, integer work, and pointer work structures (model RWork,
model IWork, model PWork): Blocks might have a need for real, integer,
or pointer work areas. For example, the Memory block uses a real work
element for each signal. These areas are used to save internal states or
similar information.

Embedded Model Functions

The Real-Time Workshop Embedded Coder target generates the following
functions:

® model_initialize: Performs all model initialization and should be called
once before you start executing your model.

e [fthe Single output/update function code generation option is selected,
then you see

= model step: Contains the output and update code for all blocks in your
model.

Otherwise, you see
= model output: Contains the output code for all blocks in your model.
= model update: Contains the update code for all blocks in your model.

¢ [f the Terminate function required code generation option is selected,
then you see

= model_terminate: This contains all model shutdown code and should be
called as part of system shutdown.

See “Model Entry Points” in the Real-Time Workshop Embedded Coder
documentation for complete descriptions of these functions.
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Rapid Prototyping Program Framework

¢ “Introduction” on page 3-22

¢ “Rapid Prototyping Program Architecture” on page 3-22

¢ “Rapid Prototyping System-Dependent Components” on page 3-23
¢ “Rapid Prototyping System-Independent Components” on page 3-25
e “Rapid Prototyping Application Components” on page 3-28

Introduction

The code modules generated from a Simulink model—model.c (or .cpp),
model .h, and other files — implement the model’s system equations, contain
block parameters, and perform initialization.

The Real-Time Workshop program framework provides the additional source
code necessary to build the model code into a complete, standalone program.
The program framework consists of application modules (files containing
source code to implement required functions) designed for a number of
different programming environments.

The automatic program builder ensures that the program is created with

the proper modules once you have configured your template makefile.

The application modules and the code generated for a Simulink model are
implemented using a common API. This API defines a data structure (called a
real-time model, sometimes abbreviated as rtM) that encapsulates all data for
your model.

This API is similar to that of S-functions, with one major exception: the API
assumes that there is only one instance of the model, whereas S-functions can
have multiple instances. The function prototypes also differ from S-functions.

Rapid Prototyping Program Architecture

The structure of a real-time program consists of three components. Each
component has a dependency on a different part of the environment in which
the program executes. The next figure shows this structure.
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Rapid Prototyping Real-Time Program Architecture

Run-Time Interface

Main program External mode communication
System-dependent components E’Eglrrrlgpt handling
I/O drivers

Integration solvers: ode1.c—ode5.c

System-independent components | \jode| execution scheduler: rt_sim.c

|
|
|
|
|
|
Data logging :
|
|
|
|
|

Generated (Model) code gg‘ﬂlr?clzlt?oer?s vsfunc.c
. MdIOutputs, etc. - my .
Application components Real-time model data structures

Inlined S-functions
Model parameters

The Real-Time Workshop architecture consists of three parts, the first two
of which include system-dependent components and system-independent
components. Together these two parts form the run-time interface.

This architecture adapts readily to a wide variety of environments by isolating
the dependencies of each program component. The following sections discuss
each component in more detail and include descriptions of the application
modules that implement the functions carried out by the system-dependent
components, system-independent components, and application components.

Rapid Prototyping System-Dependent Components

These components contain the program’s main function, which controls
program timing, creates tasks, installs interrupt handlers, enables data
logging, and performs error checking.
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The way in which application modules implement these operations depends
on the type of computer. This means that, for example, the components used
for a PC-based program perform the same operations, but differ in method of
implementation from components designed to run on a VME target.

The main Function. The main function in a C/C++ program is the point
where execution begins. In Real-Time Workshop application programs, the
main function must perform certain operations. These operations can be
grouped into three categories: initialization, model execution, and program
termination.

Initialization.
e Initialize special numeric parameters rtInf, rtMinusInf, and rtNaN.

These are variables that the model code can use.

e (Call the model registration function to get a pointer to the real-time model.
The model registration function has the same name as your model. It is
responsible for initializing real-time model fields and any S-functions in
your model.

¢ Initialize the model size information in the real-time model. This is done by
calling Md1InitializeSizes.

¢ Initialize a vector of sample times and offsets (for systems with multiple
sample rates). This is done by calling Md1InitializeSampleTimes.

® Get the model ready for execution by calling Md1Start, which initializes
states and similar items.

e Set up the timer to control execution of the model.

¢ Define background tasks and enable data logging, if selected.
Model Execution.

¢ Execute a background task: for example, communicate with the host
during external mode simulation or introduce a wait state until the next
sample interval.

¢ Execute model (initiated by interrupt).

¢ Log data to buffer (if data logging is used).
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¢ Return from interrupt.
Program Termination.

e (Call a function to terminate the program if it is designed to run for a finite
time — destroy the real-time model data structure, deallocate memory, and
write data to a file.

Rapid Prototyping Application Modules for System-Dependent
Components. The application modules contained in the system-dependent
components generally include a main module such as rt_main.c, containing
the main entry point for C. There can also be additional application modules
for such things as I/O support and timer handling.

Rapid Prototyping System-Independent Components

These components are collectively called system independent because

all environments use the same application modules to implement these
operations. This section steps through the model code (and if the model has
continuous states, calls one of the numerical integration routines). This
section also includes the code that defines, creates, and destroys the real-time
model data structure (rtM). The model code and all S-functions included in
the program define their own SimStructs.

The model code execution driver calls the functions in the model code

to compute the model outputs, update the discrete states, integrate the
continuous states (if applicable), and update time. These functions then write
their calculated data to the real-time model.

Model Execution. At each sample interval, the main program passes control
to the model execution function, which executes one step though the model.
This step reads inputs from the external hardware, calculates the model

outputs, writes outputs to the external hardware, and then updates the states.

The next figure shows these steps.

3-25



3 Architecture Considerations

3-26

Read system inputs
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/

Calculate system outputs

Write system outputs
to D/A

Execute Model i

Calculate and update
discrete states
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continuous states

Integration
Algorithm

Increment time

Executing the Model

This scheme writes the system outputs to the hardware before the states are
updated. Separating the state update from the output calculation minimizes
the time between the input and output operations.

Integration of Continuous States. The real-time program calculates the
next values for the continuous states based on the derivative vector, dx/dt,

for the current values of the inputs and the state vector.

These derivatives are then used to calculate the next values of the states
using a state-update equation. This is the state-update equation for the

first-order Euler method (ode1)

x=x+@h
dt
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where h is the step size of the simulation, x represents the state vector, and
dx/dt is the vector of derivatives. Other algorithms can make several calls to
the output and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed-step size because it i1s
necessary to guarantee the completion of all tasks within a given amount of
time. This means that, while you should use higher order integration methods
for models with widely varying dynamics, the higher order methods require
additional computation time. In turn, the additional computation time might
force you to use a larger step size, which can diminish the improvement of
accuracy initially sought from the higher order integration method.

Generally, the stiffer the equations, (that is, the more dynamics in the system
with widely varying time constants), the higher the order of the method that
you must use.

In practice, the simulation of very stiff equations is impractical for real-time
purposes except at very low sample rates. You should test fixed-step size
Iintegration in the Simulink environment to check stability and accuracy
before implementing the model for use in real-time programs.

For linear systems, it is more practical to convert the model that you are
simulating to a discrete time version, for instance, using the c2d function in
the Control System Toolbox™ product.

Application Modules for System-Independent Components. The
system-independent components include these modules:

® odel.c, ode2.c, ode3.c, ode4.c, ode5.c: These modules implement the
integration algorithms supported for real-time applications. See “Choosing
a Solver” in the Simulink documentation for more information about
fixed-step solvers.

® rt_sim.c: Performs the activities necessary for one time step of the model.
It calls the model function to calculate system outputs and then updates
the discrete and continuous states.

® simstruc_types.h: Contains definitions of various events, including
subsystem enable/disable and zero crossings. It also defines data-logging
variables.
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The system-independent components also include code that defines, creates,
and destroys the real-time model data structure. All S-functions included in
the program define their own SimStructs.

The SimStruct data structure encapsulates all the data relating to an
S-function, including block parameters and outputs. See “The SimStruct”
in the Writing S-Functions documentation for more information about
SimStruct.

Rapid Prototyping Application Components

The application components contain the generated code for the Simulink
model, including the code for any S-functions in the model. This code is
referred to as the model code because these functions implement the Simulink
model.

However, the generated code contains more than just functions to execute
the model (as described in the previous section). There are also functions

to perform initialization, facilitate data access, and complete tasks before
program termination. To perform these operations, the generated code must
define functions that

¢ (Create the real-time model

e Initialize model size information in the real-time model

¢ Initialize a vector of sample times and sample time offsets and store this
vector in the real-time model

e Store the values of the block initial conditions and program parameters in
the real-time model

¢ Compute the block and system outputs
e Update the discrete state vector
® Compute derivatives for continuous models

¢ Perform an orderly termination at the end of the program (when the
current time equals the final time, if a final time is specified)

® (Collect block and scope data for data logging (either with the Real-Time
Workshop product or third-party tools)
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The Real-Time Model Data Structure. The real-time model data structure
encapsulates model data and associated information necessary to fully
describe the model. Its contents include

e Model parameters, inputs, and outputs
® Storage areas, such as dWork

¢ Timing information

® Solver identification

® Data logging information

e Simstructs for all child S-functions

e External mode information

The required information is stored in fields in the real-time model structure,
which is defined in model.h as

/* Real-time Model Data Structure */
struct _rtModel_model_Tag {
const char *path;
const char *modelName;
struct SimStruct_tag * *childSfunctions;
const char *errorStatus;
SS_SimMode simMode;
RTWLogInfo *rtwLogInfo;
RTWExtModeInfo *extModeInfo;
RTWSolverInfo solverInfo;
RTWSolverInfo *solverInfoPtr;
void *sfcnInfo;

/*

* ModelData:

* The following substructure contains information regarding
* the data used in the model.

*/
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The (possibly mangled) name of the model replaces model in the above tag.
The individual substructures have been omitted, as they can vary.

For GRT targets, model.h also includes aliases to map global identifiers to
identifiers used in prior versions (rtB, rtP, rtY, and so on). The following
table lists the structure identifiers used in the generated code for these

variants of the real-time model data structure. The column GRT Symbol
contains the old-style (pre-Version 6) GRT identifiers, which are still used by
the GRT calling interface, but not within the generated code.

Identifiers for Real-Time Model Data Structure Variants

Identifier GRT Symbol Data

model B rtB Block 10

model_U rtu External inputs

model X rtX Continuous states

model Xdot rtXdot State derivatives

model_Xdix rtXdis Continuous state
disabled

model_Y rty External outputs

model P rtP Parameters

rts rts Child Simstruct

model DWork rtDWork DWork

model ConstB rtc Constant block 10
define, structure

model ConstP rtcP Constant parameter
Structure

model PrevzZCSigState | rtPrevZCSigState Previous zero-crossing
signal states

model NonsampledZC rtNonsampledzC Nonsampled

Zero-crossings
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Real-Time Workshop Embedded Coder users can tailor identifiers, and can
make them look like the GRT symbols listed above, should they desire such a
coding style. The above GRT-ERT identifier equivalences (or at least as many
of them as are required to build a given model) are established by using a set
of #define macros in model.h, under the comment /* Backward compatible
GRT Identifiers */.

The real-time model data structure is used for all targets. Prior to Version 5,
the ERT target used the rtObject data structure, and other targets used the
Simstruct data structure for encapsulating model data. Now all targets are
treated the same, except for the fact that the real-time model data structure is
pruned for ERT targets to save space in executables. Even when not pruned,
the real-time model data structure is more space efficient than the root
Simstruct used by earlier releases for non-ERT targets, as it only contains
fields for child (S-function) Simstructs that are actually used in a model.

Rapid Prototyping Model Code Functions. The functions defined by
the model code are called at various stages of program execution (that is,

Initialization, model execution, or program termination).

The next figure shows the functions defined in the generated code and shows
what part of the program executes each function.
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[ Model Code |

Main Program initialization

{ Model registration function: model |

| Initializes sizes in the rtM: Md1InitializeSizes |

{ Initialize sample times and offsets: Md1InitializeSampleTimes |

{ Start model (initialize conditions, etc.): Md1Start |

Model Execution

{ Compute block and system outputs: Md10utputs |

I Update discrete state vector: Md1Update |

{  Compute derivatives for continuous models: model_Derivatives |

Main Program Termination

{ Orderly termination at end of the program: Md1Terminate |

The Model Registration Function. The model registration function has the
same name as the Simulink model from which it is generated. It is called
directly by the main program during initialization. Its purpose is to initialize
and return a pointer to the real-time model data structure.

Models Containing S-Functions. A noninlined S-function is any C or C++
MEX S-function that is not implemented using a customized TLC file. If you
create a C or C++ MEX S-function as part of a Simulink model, it is by default
noninlined unless you write your own TLC file that inlines it within the body
of the model.c or model.cpp code. The Real-Time Workshop code generator
automatically incorporates your noninlined C or C++ S-functions into the
program if they adhere to the S-function API described in the Simulink
documentation.

This format defines functions and a SimStruct that are local to the S-function.
This allows you to have multiple instances of the S-function in the model. The
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model’s real-time model data structure contains a pointer to each S-function’s
SimStruct.

Code Generation and S-Functions. If a model contains S-functions, the
source code for the S-function must be on the search path the make utility uses
to find other source files. The directories that are searched are specified in the
template makefile that is used to build the program.

S-functions are implemented in a way that is directly analogous to the model
code. They contain their own public registration functions (called by the

top model code) that initialize static function pointers in their SimStructs.
When the top model needs to execute the S-function, it does so by using the
function pointers in the S-function’s SimStruct. There can be more than one
S-function with the same name in your model. This is accomplished by having
function pointers to static functions.

Inlining S-Functions. You can incorporate C/C++ MEX S-functions, along
with the generated code, into the program executable. You can also write

a target file for your C/C++ MEX S-function to inline the S-function, thus
improving performance by eliminating function calls to the S-function itself.
For more information on inlining S-functions, see the Target Language
Compiler documentation.

Application Modules for Application Components. When the Real-Time
Workshop software generates code, it produces the following files:

® model.c or model.cpp: C or C++ code generated from the Simulink block
diagram. This code implements the block diagram’s system equations as
well as performing initialization and updating outputs.

® model data.c or model data.cpp: Optional file containing data for
parameters and constant block I/0, which are also declared as extern in
model.h. Only generated when model P and model ConstB structures
are populated.

* model types.h: Forward declarations for the real-time model data
structure and the parameters data structure.

® model.h: Header file containing the block diagram’s simulation
parameters, I/O structures, work structures, and other declarations.
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® model private.h: Header file containing declarations of exported signals
and parameters.

These files are named for the Simulink model from which they are generated.

In addition, a dummy include file always named rtmodel.h is generated,
which includes the above model-specific data structures and entry points.
This enables the (static) target-specific main programs to reference files
generated by the Real-Time Workshop code generator without needing to
know the names of the models involved.

Another dummy file, rtwtypes.h, is generated, which simply includes
simstruc_types.h (only for GRT and GRT malloc targets).

If you have created custom blocks using C/C++ MEX S-functions, you need
the source code for these S-functions available during the build process.

Embedded Program Framework

The Real-Time Workshop Embedded Coder product provides a framework for
embedded programs. Its architecture is outlined in the next figure.
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Embedded Program Architecture

Run-time Interface

| |
| Svst Main Program |
| ystem Timing

I Dependent Interrupt handling :
| Components I/O drivers

I Data logging :
| |
| |
| |
| |
| System . I
| Independent Integratlo_n solvers I
I Components Model execution scheduler |
| |
| |
| |
| |
| |

Generated (Model) Code
Output and step functions
S-functions
Model parameters

Application
Components

Note the similarity between this architecture and the rapid prototyping
architecture in the figure “Rapid Prototyping Program Architecture” on page
3-22. The main difference is the use of the rtModel data structure in place of
the SimStruct data structure.

Using the previous figure, you can compare the embedded style of generated
code, used in the Real-Time Workshop Embedded Coder product, with

the rapid prototyping style of generated code of the previous section. Most
of the rapid prototyping explanations in the previous section hold for the
Real-Time Workshop Embedded Coder target. The Real-Time Workshop
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Embedded Coder target simplifies the process of using the generated code in
your custom-embedded applications by providing a model-specific API and
eliminating the SimStruct. This target contains the same conceptual layering
as the rapid prototyping target, but each layer has been simplified.

For a discussion of the structure of embedded real-time code, see the
Real-Time Workshop Embedded Coder documentation.
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Creating Subsystems

In this section...

“Introduction” on page 3-37
“Generating Code and Executables from Subsystems” on page 3-38
“Nonvirtual Subsystem Code Generation Options” on page 3-41

“Modularity of Subsystem Code” on page 3-50

Introduction

The Real-Time Workshop product allows you to control how code is generated
for any nonvirtual subsystem. The categories of nonvirtual subsystems are:

* Conditionally executed subsystems: execution depends upon a control signal
or control block. These include triggered subsystems, enabled subsystems,
action and iterator subsystems, subsystems that are both triggered
and enabled, and function call subsystems. See “Creating Conditional
Subsystems” in the Simulink documentation for more information.

® Atomic subsystems: Any virtual subsystem can be declared atomic (and
therefore nonvirtual) by using the Treat as atomic unit option in the
Block Parameters dialog box.

Note You should declare virtual subsystems as atomic subsystems to ensure
consistent simulation and execution behavior for your model. If you generate
code for a virtual subsystem, the Real-Time Workshop software treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and introduce inconsistencies with the simulation behavior.

See “Systems and Subsystems” in the Simulink documentation, and run the
sl_subsys_semantics demo for more information on nonvirtual subsystems
and atomic subsystems.

You can control the code generated from nonvirtual subsystems as follows:
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You can instruct the Real-Time Workshop code generator to generate
separate functions, within separate code files if desired, for selected
nonvirtual systems. You can control both the names of the functions and of
the code files generated from nonvirtual subsystems.

You can cause multiple instances of a subsystem to generate reusable code,
that is, as a single reentrant function, instead of replicating the code for
each instance of a subsystem or each time it is called.

You can generate inlined code from selected nonvirtual subsystems within
your model. When you inline a nonvirtual subsystem, a separate function
call is not generated for the subsystem.

Generating Code and Executables from Subsystems

The Real-Time Workshop software can generate code and build an executable
from any subsystem within a model. The code generation and build process
uses the code generation and build parameters of the root model.

To generate code and build an executable from a subsystem,

2

3
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Set up the desired code generation and build parameters in the
Configuration Parameters dialog box, just as you would for code generation
from a model.

Select the desired subsystem block.

Right-click the subsystem block and select Build Subsystem from the
Real-Time Workshop submenu of the subsystem block’s context menu.

Alternatively, you can select Build Subsystem from the Real-Time
Workshop submenu of the Tools menu. This menu item is enabled when
a subsystem 1is selected in the current model.

Note If the model is operating in external mode when you select Build
Subsystem, the Real-Time Workshop build process automatically turns off
external mode for the duration of the build, then restores external mode
upon its completion.
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4 The Build Subsystem window opens. This window displays a list of the
subsystem parameters. The upper pane displays the name, class, and
storage class of each variable (or data object) that is referenced as a block
parameter in the subsystem. When you select a parameter in the upper
pane, the lower pane shows all the blocks that reference the parameter and
the parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu
lets you set the storage class of any parameter or inline the parameter. To
inline a parameter, select the Inline option from the menu. To declare
a parameter to be tunable, set the storage class to any value other than

Inline.

<) Build code for Subsystem: Gain

~Picktunahble parameters

=] B3

Yariahle Mame

Class

StorageClass

G K

ASAFZ.Farameter SimulinkGlokal

@ K2

Simulink.Parameter || INlined

SimulinkGlobal
ﬁlﬂ double ExportedGlobal

EiKIEIK

rBlocks using selected variable: 'K3*

Block

Parent

@ Gainz

gainiGain

Build Cancel

Help

Status
’7 Selecttunahle parameters and click Build

In the previous figure, the parameter K2 is inlined, while the other
parameters are tunable and have various storage classes.

See Chapter 10, “Parameter Considerations” and Chapter 12, “Simulink
Data Object Considerations” for more information on tunable and inlined

parameters and storage classes.

5 After selecting tunable parameters, click the Build button. This initiates
the code generation and build process.
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6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the generated executable is in your
working directory. The name of the generated executable is subsystem.exe
(on PC platforms) or subsystem (on The Open Group UNIX® platforms),
where subsystem is the name of the source subsystem block.

The generated code is in a build subdirectory, named
subsystem_target_rtw, where subsystem is the name of the
source subsystem block and target is the name of the target configuration.

When you generate code for a subsystem, you can generate an S-function by
selecting Tools > Real-Time Workshop > Generate S-function, or you can
use a right-click subsystem build. See “Automated S-Function Generation” on
page 3-104 and “Generating S-Function Wrappers” for more details.

Real-Time Workshop Subsystem Build Limitations

The following limitations apply to building subsystems using the Real-Time
Workshop software:

¢ When you right-click build a subsystem that includes an Outport block
for which the signal specification Specify properties via bus object is
selected, the Real-Time Workshop build process requires that you set the
Signal label mismatch option on the Diagnostics > Connectivity pane
of the Configuration Parameters dialog box for the parent model to error.
You need to address any errors that occur by properly setting signal labels.

® When a subsystem is in a triggered or function-call subsystem, the
right-click build process might fail if the subsystem code is not sample-time
independent. To find out whether a subsystem is sample-time independent:

1 Copy all blocks in the subsystem to an empty model.
2 In the Configuration Parameters > Solver pane, set:
a. Type to Fixed-step.

b. Periodic sample time constraint to Ensure sample time
independent.

c. Click Apply.

1 Update the model. If the model is sample-time dependent, Simulink
generates an error in the process of updating the diagram.
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Nonvirtual Subsystem Code Generation Options

For any nonvirtual subsystem, you can choose the following code generation
options from the Real-Time Workshop system code menu in the subsystem
Block parameters dialog box:

e Auto: This is the default option, and provides the greatest flexibility in
most situations. See “Auto Option” on page 3-41 below.

® Inline: This option explicitly directs the Real-Time Workshop code
generator to inline the subsystem unconditionally.

® Function: This option explicitly directs the Real-Time Workshop code
generator to generate a separate function with no arguments, and
(optionally), place the subsystem in a separate file. You can name the
generated function and file. As functions created with this option rely on
global data, they are not reentrant.

e Reusable function: Generates a function with arguments that allows
the subsystem’s code to be shared by other instances of it in the model.
To enable sharing, the Real-Time Workshop software must be able to
determine (by using checksums) that subsystems are identical. The
generated function will have arguments for block inputs and outputs
(rtB_*), continuous states (rtDW_*), parameters (rtP_*), and so on.

Note You should not directly call reusable functions generated by the
Real-Time Workshop product. The call interface is subject to change.

The following sections discuss these options further.

Auto Option

The Auto option is the default, and is generally appropriate. Auto causes the
Real-Time Workshop code generator to inline the subsystem when there is
only one instance of it in the model. When multiple instances of a subsystem
exist, the Auto option results in a single copy of the function whenever
possible (as a reusable function). Otherwise, the result is as though you
selected Inline (except for function call subsystems with multiple callers,
which is handled as if you specified Function). Choose Inline to always
inline subsystem code, or Function when you specifically want to generate
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a separate function without arguments for each instance, optionally in a
separate file.

Note When you want multiple instances of a subsystem to be represented
as one reusable function, you can designate each one of them as Auto or as
Reusable function. It is best to use one or the other, as using both creates
two reusable functions, one for each designation. The outcomes of these
choices differ only when reuse is not possible.

To use the Auto option,

1 Select the subsystem block. Then select Subsystem Parameters from
the Simulink model editor Edit menu. The Block Parameters dialog box
opens, as shown in the next figure.

Alternatively, you can open the Block Parameters dialog box by
¢ Shift-double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in the
next figure. This makes the subsystem nonvirtual, and the Real-Time
Workshop system code option becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code option is already enabled.

3 Select Auto from the Real-Time Workshop system code menu as shown
in the figure below.
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[=]Function Block Parameters: AtomicSubsysi |

—Subzyztem

Select the settings for the subsystem block.

—Parameter

Fiead/wirite permlssmns:l Feadwrite LI

Mame of eror callback function:

Permit hierarchical resolution:l All ;I

¥ Treat as atomic unit

[~ Minimize algebraic lnop occunences
Sample time [-1 for inherited):

|

Rieal-Time Workshop system code:l Auta ;I

ak LCancel | Help | Apply |

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

Auto Optimization for Special Cases. Rather than reverting to Inline,
the Auto option can optimize code in special situations in which identical
subsystems contain other identical subsystems, by both reusing and inlining
generated code. Suppose a model, such as the one shown in Reuse of
Identical Nested Subsystems with the Auto Option on page 3-44, contains
identical subsystems Al and A2. Al contains subsystem B1, and A2 contains
subsystem B2, which are themselves identical. In such cases, the Auto option
causes one function to be generated which is called for both Al and A2, and
this function contains one piece of inlined code to execute B1 and B2, ensuring
that the resulting code will run as efficiently as possible.
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Speciol Cose Optimizotion:
When B1=B2 und A1=A2, selecting the Auto
option inlines cod e for B within cotle for function A

Al

O
O—»

| B2

Az

Reuse of Identical Nested Subsystems with the Auto Option

Inline Option

As noted above, you can choose to inline subsystem code when the subsystem
is nonvirtual (virtual subsystems are always inlined).

Exceptions to Inlining. There are certain cases in which the Real-Time
Workshop code generator does not inline a nonvirtual subsystem, even though
the Inline option is selected. These cases are

e [fthe subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make such
calls by using function pointers; therefore the function-call subsystem must
generate a function with all arguments present.

¢ In a feedback loop involving function-call subsystems, the Real-Time
Workshop code generator forces one of the subsystems to be generated as
a function instead of inlining it. The product selects the subsystem to be
generated as a function based on the order in which the subsystems are
sorted internally.

e [f a subsystem is called from an S-Function block that sets the option
SS_OPTION_FORCE_NONINLINED FCNCALL to TRUE, it is not inlined. This
might be the case when user-defined Asynchronous Interrupt blocks or
Task Synchronization blocks are required. Such blocks must be generated
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as functions. The Asynchronous Interrupt and Task Synchronization
blocks, located in the VxWorks® block library shipped with the Real-Time
Workshop product, use the SS_OPTION_FORCE_NONINLINED_FCNCALL
option.?

To generate inlined subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.
Alternatively, you can open the Block Parameters dialog box by
¢ Shift-double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu

2 If the subsystem is virtual, select Treat as atomic unit as shown in
the next figure. This makes the subsystem atomic, and the Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

3 Select Inline from the Real-Time Workshop system code menu as
shown in the figure below.

2. VxWorks® is a registered trademark of Wind River® Systems, Inc.
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[=]Function Block Parameters: AtomicSubsysi |

—Subzyztem

Select the settings for the subsystem block.

—Parameter
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Mame of eror callback function:
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¥ Treat as atomic unit
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Sample time [-1 for inherited):

|
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ak LCancel | Help | Apply |

4 Click Apply and close the dialog box.

When you generate code from your model, the Real-Time Workshop code
generator writes inline code within model.c or model.cpp (or in its parent
system’s source file) to perform subsystem computations. You can identify
this code by system/block identification tags, such as the following.

/* Atomic SubSystem Block: <Root>/AtomicSubsysi */

See “Tracing Generated Code” on page 42-3 for more information on
system/block identification tags.

Function Option

Choosing the Function or Reusable function option lets you direct the
Real-Time Workshop code generator to generate a separate function and
optionally a separate file for the subsystem. When you select the Function
option, two additional options are enabled:

¢ The Real-Time Workshop function name options menu lets you
control the naming of the generated function.
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¢ The Real-Time Workshop file name options menu lets you control the
naming of the generated file (if a separate file is generated and you select
the User specified option).

The figure below shows the Block Parameters dialog box with the Function
option selected, with Real-Time Workshop file name options set to User
specified, and with a name specified for the generated file.

=] Function Block Parameters: AtomicSubsysi x|

—Subzyztem

Select the zettings for the subsystem block.

—Parameters

¥ Show port labels

I Readwrite ;I

Mame of error callback function:

Permit hierarchical resolution:l All LI

[ Treat as atomic unit
[~ Minimize algebraic loop occunences

S ample time (-1 for inherited]:

|1

Rieal-Time Workshop system code:l Function ;I
Fieal-Time Workshop function name options:| Auta ;I
Rieal-Time Workshop file name options:l User specified LI
Rieal-Time Workshop file name [ho extengion):
I.&-Separate_FiIe

oK. I Cancel | Apply |

Subsystem Function Code Generation Option with User-Specified File Name

Real-Time Workshop Function Name Options Menu. This menu offers
the following choices, but the resulting identifiers are also affected by which
General code appearance options are in effect for the model:

® Auto: By default, the Real-Time Workshop code generator assigns a unique
function name using the default naming convention: model subsystem(),
where subsystem is the name of the subsystem (or that of an identical one
when code is being reused).
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Use subsystem name: the Real-Time Workshop code generator uses the
subsystem name as the function name.

Note When a subsystem is a library block, the Use subsystem name option
causes its function identifier (and file name, see below) to be that of the
library block, regardless of the names used for that subsystem in the model.

User specified: When this option is selected, the Real-Time Workshop
function name field is enabled. Enter any legal C or C++ function name
(which must be unique).

Real-Time Workshop File Name Options Menu. This menu offers the
following choices:

3-48

Use subsystem name: the Real-Time Workshop software generates a
separate file, using the subsystem (or library block) name as the file name.

Note When a subsystem’s Real-Time Workshop file name options
1s set to Use subsystem name, the subsystem file name is mangled

if the model contains Model blocks, or if a model reference target is
being generated for the model. In these situations, the file name for the
subsystem consists of the subsystem name prefixed by the model name.

Use function name: the Real-Time Workshop software generates a
separate file, using the function name (as specified by the Real-Time
Workshop function name options) as the file name.

User specified: When this option is selected, the Real-Time Workshop
file name (no extension) text entry field is enabled. The Real-Time
Workshop software generates a separate file, using the name you enter as
the file name. Enter any file name, but do not include the .c or .cpp (or
any other) extension. This file name need not be unique.
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Note While a subsystem source file name need not be unique, you must
avoid giving nonunique names that result in cyclic dependencies (for
example, sys_a.h includes sys_b.h, sys b.h includes sys_c.h, and
sys_c.h includes sys_a.h).

Auto: The Real-Time Workshop software does not generate a separate file
for the subsystem. Code generated from the subsystem is generated within
the code module generated from the subsystem’s parent system. If the
subsystem’s parent is the model itself, code generated from the subsystem
1s generated within model.c or model.cpp.

To generate both a separate subsystem function and a separate file,

Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu, to open the Block Parameters dialog box.

Alternatively, you can open the Block Parameters dialog box by
¢ Shift-double-clicking the subsystem block
® Right-clicking the subsystem block and selecting Block parameters

from the menu.

If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.

Select Function from the Real-Time Workshop system code menu as
shown in Subsystem Function Code Generation Option with User-Specified
File Name on page 3-47.

Set the function name, using the Real-Time Workshop function name
options described in “Real-Time Workshop Function Name Options Menu”
on page 3-47.

Set the file name, using any Real-Time Workshop file name option

other than Auto (options are described in “Real-Time Workshop File Name
Options Menu” on page 3-48).
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Subsystem Function Code Generation Option with User-Specified File
Name on page 3-47 shows the use of the User Specified file name option.

6 Click Apply and close the dialog box.

Modularity of Subsystem Code

Code generated from nonvirtual subsystems, when written to separate

files, is not completely independent of the generating model. For example,
subsystem code may reference global data structures of the model. Each
subsystem code file contains appropriate include directives and comments
explaining the dependencies. The Real-Time Workshop software checks for
cyclic file dependencies and warns about them at build time. For descriptions
of how generated code is packaged, see “Generated Source Files and File
Dependencies” on page 21-2.
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Creating Model Components

In this section...

“Introduction” on page 3-51

“Overview of Referenced Model Code Generation” on page 3-51
“Project Directory Structure for Model Reference Targets” on page 3-53
“Configuring Referenced Models” on page 3-54

“Building Model Reference Targets” on page 3-54

“Real-Time Workshop Model Referencing Requirements” on page 3-55
“Storage Classes for Signals Used with Model Blocks” on page 3-62
“Inherited Sample Time for Referenced Models” on page 3-66

“Customizing the Library File Suffix, Including the File Type Extension”
on page 3-68

“Real-Time Workshop Model Referencing Limitations” on page 3-68

Introduction

This section describes model referencing considerations that apply specifically
to code generation by the Real-Time Workshop software with GRT and ERT
system targets. This section assumes that you understand referenced models
and their terminology and requirements, as described in “Referencing a
Model”. This section does not repeat information that appears in that chapter.

Overview of Referenced Model Code Generation

When generating code for a referenced model hierarchy, the Real-Time
Workshop software generates a stand-alone executable for the top model, and
a library module called a model reference target for each referenced model.
When the code executes, the top executable invokes the model reference
targets as needed to compute the referenced model outputs. Model reference
targets are sometimes called Real-Time Workshop targets.

Be careful not to confuse a model reference target (Real-Time Workshop
target) with any of these other types of targets:
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e Hardware target — A platform for which the Real-Time Workshop software
generates code

e System target — A file that tells the Real-Time Workshop software how to
generate code for particular purpose

e Rapid Simulation target (RSim) — A system target file supplied with the
Real-Time Workshop product

® Simulation target — A MEX-file that implements a referenced model that
executes with Simulink® Accelerator™ software

The Real-Time Workshop code generator places the code for the top model of a
hierarchy in the current working directory, and the code for submodels in a
directory named slprj within the current working directory. Subdirectories
in slprj provide separate places for different types of files. See “Project
Directory Structure for Model Reference Targets” on page 3-53 for details.

By default, the product uses incremental code generation. When generating
code, it compares the date, and optionally, the structure of referenced
model files with the generated code files to determine whether it is
necessary to regenerate model reference targets. You can also force or
prevent code generation by using a diagnostic setting Configuration
Parameters > Model Referencing > Rebuild options.

In addition to incremental code generation, the Real-Time Workshop software
uses incremental loading. The code for a referenced model is not loaded into
memory until the code for its parent model executes and needs the outputs
of the referenced model. The product then loads the referenced model target
and executes. Once loaded, the target remains in memory until it is no longer
needed.

Most code generation considerations are the same whether or not a model
includes any referenced models: the Real-Time Workshop code generator
handles the details automatically insofar as possible. This chapter describes
topics that you may need to consider when generating code for a model
reference hierarchy.

Custom targets must declare themselves to be model reference compliant if
they need to support Model blocks. See “Supporting Optional Features” for
details.
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Referenced Model Code Generation Tutorial

You can get hands-on experience with creating referenced models and
generating code for them by working through the model reference tutorial.
See “Generating Code for a Referenced Model”.

Project Directory Structure for Model Reference
Targets

Code for models referenced by using Model blocks is generated in project
directories within the current working directory. The top-level project
directory is always named /slprj. The next level within slprj contains
parallel build area subdirectories.

The following table lists principal project directories and files. In the paths
listed, model is the name of the model being used as a referenced model,
and target is the system target file acronym (for example, grt, ert, rsim,
and so on).

Directories and Files Description

slprj/sim/model/ Simulation target files for referenced
models

slprj/sim/model/tmwinternal MAT-files used during code generation

slprj/target/model/referenced_model_includes Header files from models referenced by
this model

slprj/target/model Model reference target files

slprj/target/model/tmwinternal

MAT-files used during code generation

slprj/sl proj.tmw Marker file

slprj/target/_sharedutils Utility functions for model reference

targets, shared across models

slprj/sim/_sharedutils Utility functions for simulation targets,

shared across models

If you are building code for more than one referenced model within the same
working directory, model reference files for all such models are added to the
existing slprj directory.
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Configuring Referenced Models

Minimize occurrences of algebraic loops by selecting the Minimize algebraic
loop occurrences parameter on the Model Reference pane. The setting of
this option affects only generation of code from the model. See “Configuring
the Hardware Implementation” on page 32-2 in the Real-Time Workshop
documentation for information on how this option affects code generation. For
more information, see “Model Blocks and Direct Feedthrough”.

Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you intend to use to
compile code generated from the model. This setting appears on the Signal
Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product and Lookup Table (n-D) blocks.

For most blocks, the value of Integer rounding mode completely defines
rounding behavior. For blocks that support fixed-point data and the Simplest
rounding mode, the value of Signed integer division rounds to also affects
rounding. For details, see “Rounding” in the Simulink Fixed Point User’s
Guide.

When models contain Model blocks, all models that they reference must

be configured to use identical hardware settings. For information on the
Model Referencing pane options, see “Referencing a Model” in the Simulink
documentation.

Building Model Reference Targets

By default, the Simulink engine rebuilds simulation targets as needed before

the Real-Time Workshop software generates model reference targets. You can
change the rebuild criteria or specify that the engine always or never rebuilds
targets. See “Rebuild options” for details.

The Real-Time Workshop software generates a model reference target directly
from the Simulink model. The product automatically generates or regenerates
model reference targets as needed.

You can command the Simulink and Real-Time Workshop products to
generate a simulation target for an Accelerator mode referenced model, and a
model reference target for any referenced model, by executing the slbuild
command with appropriate arguments in the MATLAB Command Window.
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The Real-Time Workshop software generates only one model reference target
for all instances of a referenced model. See “Reusable Code and Referenced
Models” on page 3-73 for details.

Reducing Change Checking Time

You can reduce the time that the Simulink and Real-Time Workshop products
spend checking whether any or all simulation targets and model reference
targets need to be rebuilt by setting configuration parameter values as follows:

¢ In the top model, set Configuration Parameters > Model
Referencing > Rebuild options to If any changes in known
dependencies detected. (See “Rebuild options”.)

¢ In all referenced models throughout the hierarchy, set Configuration
Parameters > Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block, so setting either value for any instance of a
referenced model sets it for all instances of that model.

Real-Time Workshop Model Referencing
Requirements
A model reference hierarchy must satisfy various Real-Time Workshop
requirements, as described in this section. In addition to these requirements,
a model referencing hierarchy to be processed by the Real-Time Workshop
software must satisfy:
¢ The Simulink requirements listed in:

= “Configuration Requirements for All Referenced Model Simulation”

= “Model Structure Requirements”

® The Simulink limitations listed in “Limitations on All Model Referencing”

® The Real-Time Workshop limitations listed in “Real-Time Workshop Model
Referencing Limitations” on page 3-68
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Configuration Parameter Requirements

A referenced model uses a configuration set in the same way that any other
model does, as described in “Setting Up Configuration Sets”. By default, every
model in a hierarchy has its own configuration set, which it uses in the same
way that it would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing. The
response of the Real-Time Workshop software to an inconsistent or unusable
configuration parameter depends on the parameter:

® Where an inconsistency has no significance, or a trivial resolution exists
that carries no risk, the product ignores or resolves the inconsistency
without posting a warning.

® Where a nontrivial and possibly acceptable solution exists, the product
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

® Where no acceptable resolution is possible, the product generates an
error. You must then change some or all parameter values to eliminate
the problem.

When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Referencing Configuration Sets” for details.

The following tables list configuration parameters that can cause problems if
set in certain ways, or if set differently in a referenced model than in a parent
model. Where possible, the Real-Time Workshop software resolves violations
of these requirements automatically, but most cases require changes to the
parameters in some or all models.
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Configuration Requirements for Model Referencing with All System
Targets

Dialog Box Option Requirement
Pane
Solver Start time Some system

targets require
the start time of
all models to be

Zero.
Hardware Emulation hardware options All values
Implementation must be the

same for top
and referenced
models.

Real-Time System target file Must be the
Workshop same for top
and referenced
models.

Language Must be the
same for top
and referenced
models.

Generate code only Must be the
same for top
and referenced
models.

Symbols Maximum identifier length Cannot be longer
for a referenced
model than for
its parent model.
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Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box Option Requirement

Pane

Interface Target Must be the
function same for top
library and referenced

models.

Data exchange
Interface

C API

The C API
Signals and
Parameters
check boxes
must be the
same for top
and referenced
models.

ASAP2

Can be on or off
in a top model,
but must be off
in a referenced
model. Ifit is not,
the Real-Time
Workshop
software
temporarily sets
it to of f during
code generation.
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Configuration Requirements for Model Referencing with ERT System

Targets
Dialog Box Option Requirement
Pane
Real-Time Ignore custom storage classes Must be the
Workshop same for top
and referenced
models.
Symbols Global variables $R token must

Global types

Subsystem methods

Local temporary variables
Constant macros

appear.

Signal naming

Must be the
same for top
and referenced
models.

M-function

If specified,
must be the
same for top
and referenced
models.

Parameter naming

Must be the
same for top
and referenced
models.

#define naming

Must be the
same for top
and referenced
models.
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Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box
Pane

Option

Requirement

Interface

Support floating- point numbers

If off for top
model, must
be off for
referenced
models.

Support non-finite numbers

If off for top
model, must
be off for
referenced
models.

Support complex numbers

If off for top
model, must
be off for
referenced
models.

Terminate function required

Must be the
same for top
and referenced
models.

Suppress error status in
real-time model

If on for top
model, must be
on for referenced
models.

Templates

Target operating system

Must be the
same for top
and referenced
models.
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Configuration Requirements for Model Referencing with ERT System
Targets (Continued)

Dialog Box Option Requirement
Pane

Data Module Naming Must be the
Placement same for top

and referenced
models.

Module Name (if specified)

If set, must be
the same for top
and referenced
models.

Signal display level

Must be the
same for top
and referenced
models.

Parameter tune level

Must be the
same for top
and referenced
models.

Naming Requirements
Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When you generate code from
a model that uses model referencing, the Maximum identifier length
parameter must be large enough to accommodate the root model name and
the name mangling string (if needed). A code generation error occurs if

Maximum identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.
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Real-Time Workshop Embedded Coder Naming Requirements. The
Real-Time Workshop Embedded Coder product provides a Symbol format
field that lets you control the formatting of generated symbols in much
greater detail. When generating code with an ERT target from a model that
uses model referencing:

® The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).
¢ The Maximum identifier length must be large enough to accommodate

full expansions of the $R and $M tokens.

See “Real-Time Workshop Pane: Symbols” and “Preparing Models for Code
Generation” for more information.

Custom Target Requirements

A custom target must meet various requirements in order to support model
referencing. See “Supporting Optional Features” for details.

Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without
restriction. However, when you declare signals to be global, you must be
aware of how the signal data will be handled.

A global signal is a signal with a storage class other than Auto:

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer
® Custom

The above are distinct from SimulinkGlobal signals, which are treated as
test points with Auto storage class.

Global signals are declared, defined, and used as follows:
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® An extern declaration is generated by all models that use any given global
signal.

As a result, if a signal crosses a Model block boundary, the top model and
the referenced model both generate extern declarations for the signal.

® For any exported signal, the top mode is responsible for defining (allocating
memory for) the signal, whether or not the top model itself uses the signal.

e All global signals used by a referenced model are accessed directly (as
global memory). They are not passed as arguments to the functions that
are generated for the referenced models.

Custom storage classes also follow the above rules. However, certain custom
storage classes are not currently supported for use with model reference. See
“Custom Storage Class Limitations” for details.

Storage Classes for Parameters Used with Model Blocks
All storage classes are supported for both simulation and code generation, and

all except Auto are tunable. The supported storage classes thus include
e SimulinkGlobal

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

® Custom
Note the following restrictions on parameters in referenced models:

¢ Tunable parameters are not supported for noninlined S-functions.

¢ Tunable parameters set using the Model Parameter Configuration dialog
box are ignored.

Note the following considerations concerning how global tunable parameters
are declared, defined, and used in code generated for targets:

e A global tunable parameter is a parameter in the base workspace with a
storage class other than Auto.
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® An extern declaration is generated by all models that use any given
parameter.

e If a parameter is exported, the top model is responsible for defining
(allocating memory for) the parameter (whether it uses the parameter
or not).

e All global parameters are accessed directly (as global memory). They are
not passed as arguments to any of the functions that are generated for
any of the referenced models.

® Symbols for SimulinkGlobal parameters in referenced models are
generated using unstructured variables (rtP_xxx) instead of being written
into the model_ P structure. This is so that each referenced model can be
compiled independently.

Certain custom storage classes for parameters are not currently supported for
model reference. See “Custom Storage Class Limitations” for details.

Parameters used as Model block arguments must be defined in the referenced
model’s workspace. See “Parameterizing Model References” in the Simulink
documentation for specific details.

Effects of Signal Name Mismatches

Within a parent model, the name and storage class for a signal entering or
leaving a Model block might not match those of the signal attached to the root
inport or outport within that referenced model. Because referenced models
are compiled independently without regard to any parent model, they cannot
adapt to all possible variations in how parent models label and store signals.

The Real-Time Workshop software accepts all cases where input and output

signals in a referenced model have Auto storage class. When such signals are
test pointed or are global, as described above, certain restrictions apply. The
following table describes how mismatches in signal labels and storage classes
between parent and referenced models are handled:
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Relationships of Signals and Storage Classes Between Parent and
Referenced Models

Signal
Referenced Signal Passing | Mismatch
Model Parent Model | Method Checking
Auto Any Function None

argument
SimulinkGlobal | Any Function Label Mismatch
or resolved to argument Diagnostic (none
Signal Object / warning / error)
Global Auto or Global variable Label Mismatch
SimulinkGlobal Diagnostic (none

/ warning / error)

Global Global Global variable Labels and

storage classes
must be identical
(else error)

To summarize, the following signal resolution rules apply to code generation:

e [f the storage class of a root input or output signal in a referenced model is
Auto (or 1s SimulinkGlobal), the signal is passed as a function argument.

= When such a signal is SimulinkGlobal or resolves to a Simulink.Signal
object, the Signal Mismatch diagnostic is applied.

e If a root input or output signal in a referenced model is global, it is
communicated by using direct memory access (global variable). In addition,

= If the corresponding signal in the parent model is also global, the names
and storage classes must match exactly.

= If the corresponding signal in the parent model is not global, the Signal

Mismatch diagnostic is applied.

You can set the Signal Mismatch diagnostic to error, warning, or none in
the Configuration Parameters > Diagnostics > Connectivity dialog.
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Inherited Sample Time for Referenced Models

See “Inheriting Sample Times” in the Simulink documentation
for information about Model block sample time inheritance. In
generated code, you can control inheriting sample time by using

SS

SetModelReferenceSampleTimeInheritanceRule in different ways:

An S-function that precludes inheritance: If the sample time is used

in the S-function’s run-time algorithm, then the S-function precludes a
model from inheriting a sample time. For example, consider the following
md1lOutputs code:

static void mdlOutputs(SimStruct *S, int T tid)

{
const real T *u = (const real T*)
ssGetInputPortSignal(S,0);
real T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[O0];

}

This md10utputs code uses the sample time in its algorithm, and the
S-function therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE) ;

® An S-function that does not preclude Inheritance: If the sample time is
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only used for determining whether the S-function has a sample hit, then it
does not preclude the model from inheriting a sample time. For example,
consider the md10utputs code from the S-function demo sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int_T tid)
{

InputRealPtrsType enablePtrs;

int *enabled = ssGetIWork(S);

if (ssGetInputPortSampleTime

(S,ENABLE_IPORT)==CONTINUOUS_SAMPLE_TIME &&

ssGetInputPortOffsetTime(S,ENABLE_IPORT)==0.0) {
if (ssIsMajorTimeStep(S) &&
ssIsContinuousTask(S,tid)) {
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enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

} else {

int enableTid =

ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);

if (ssIsSampleHit(S, enableTid, tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

if (*enabled) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT);
real T signal = *uPtrs[0];
int ij

for (i = 0; i < NOUTPUTS; i++) {
if (ssIsSampleHit(S,
ssGetOutputPortSampleTimeIndex(S,i), tid)) {
real T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;

}

}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining
whether there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE) ;
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Customizing the Library File Suffix, Including the File
Type Extension

You can control the library file suffix, including the file type extension, that
the Real-Time Workshop code generator uses to name generated model
reference libraries by specifying the string for the suffix with the model
configuration parameter TargetLibSuffix. The string must include a period
(.). If you do not set this parameter,

On a... The Real-Time Workshop Software Names the
Libraries...

Microsoft Windows® | model rtwlib.lib

system

The Open Group model_rtwlib.a

UNIX system

Real-Time Workshop Model Referencing Limitations
The following Real-Time Workshop limitations apply to model referencing.

In addition to these limitations, a model reference hierarchy used for code
generation must satisfy:
¢ The Simulink requirements listed in:

= “Configuration Requirements for All Referenced Model Simulation”

= “Model Structure Requirements”

¢ The Simulink limitations listed in “Simulink Model Referencing
Limitations”.

® The Real-Time Workshop requirements applicable to the code generation
target, as listed in “Configuration Parameter Requirements” on page 3-56.

Customization Limitations

® The Real-Time Workshop code generator ignores custom code settings in
the Configuration Parameter dialog box and custom code blocks when
generating code for a referenced model.
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Some restrictions exist on grouped custom storage classes in referenced
models. See “Custom Storage Class Limitations” for details.

Referenced models do not support custom storage classes if the parent
model has inline parameters off.

This release does not include Stateflow target custom code in simulation
targets generated for referenced models.

Data type replacement is not supported for simulation target code
generation for referenced models.

Simulation targets do not include Stateflow target custom code.

Data Logging Limitations

To Workspace blocks, Scope blocks, and all types of runtime display, such
as the display of port values and signal values, are ignored when the
Real-Time Workshop software generates code for a referenced model. The
resulting code is the same as if the constructs did not exist.

Code generated for referenced models cannot log data to MAT-files. If data
logging is enabled for a referenced model, the Real-Time Workshop software
disables the option before code generation and re-enables it afterwards.

State Initialization Limitation

When a top model uses the Load from workspace > Initial state option to
specify initial conditions, Real-Time Workshop does not initialize the states of
any referenced models.
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Reusability Limitations

If a referenced model used for code generation has any of the following
properties, the model must specify Configuration Parameters > Model
Referencing > Total number of instances allowed per top model as
One, and no other instances of the model can exist in the hierarchy. If the
parameter is not set correctly, or more than one instance of the model exists
in the hierarchy, an error occurs. The properties are:

¢ The model references another model which has been set to single instance

* The model contains a state or signal with non-auto storage class

The model uses any of the following Stateflow constructs:
= Machine-parented data
= Machine-parented events

= Stateflow graphical functions

The model contains a subsystem that is marked as function

The model contains an S-function that is:
= Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE
= Not inlined

The model contains a function-call subsystem that:
= Has been forced by the Simulink engine to be a function

= Is called by a wide signal
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S-Function Limitations

e [If a referenced model contains an S-function that should be inlined using a
Target Language Compiler file, the S-function must use the ssSetOptions
macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR option in its
mdlInitializeSizes method. The simulation target will not inline the
S-function unless this flag is set.

® The Real-Time Workshop software cannot generate code for a referenced
model that includes noninlined S-functions.

e A referenced model cannot use noninlined S-functions generated by the
Real-Time Workshop software.

® The Real-Time Workshop S-function target does not support model
referencing.

Simulink Tool Limitations

e Simulink tools that require access to a model’s internal data or
configuration (including the Model Coverage tool, the Simulink Report
Generator product, the Simulink debugger, and the Simulink profiler) have
no effect on code generated by the Real-Time Workshop software for a
referenced model, or on the execution of that code. Specifications made and
actions taken by such tools are ignored and effectively do not exist.

Subsystem Limitations

e [f a subsystem contains Model blocks, you cannot build a subsystem
module by right-clicking the subsystem (or by using Tools > Real-Time
Workshop > Build subsystem) unless the model is configured to use
an ERT target.

e Ifyou generate code for an atomic subsystem as a reusable function, inputs
or outputs that connect the subsystem to a referenced model can affect code
reuse, as described in “Reusable Code and Referenced Models” on page 3-73.

Target Limitations

¢ Real-Time Workshop grt_malloc targets do not support model reference.
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® The Real-Time Workshop S-function target does not support model
referencing.

Other Limitations

¢ Errors or unexpected behavior can occur if a Model block is part of a cycle,
the Model block is a direct feedthrough block, and an algebraic loop results.
See “Model Blocks and Direct Feedthrough” for details.

¢ The External mode option is not supported. If it is enabled, it is ignored
during code generation.
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Creating Reusable Components

In this section...

“Reusable Function Option” on page 3-73
“Reusable Code and Referenced Models” on page 3-73
“Generating Reusable Code from Stateflow Charts” on page 3-77

“Generating Reusable Code for Subsystems Containing S-Function Blocks”
on page 3-77

“Code Reuse Limitations” on page 3-79

“Determining Why Subsystem Code Is Not Reused” on page 3-80

Reusable Function Option

The difference between functions and reusable functions is that the latter
have data passed to them as arguments (enabling them to be reentrant),
while the former communicate by using global data. Choosing the Reusable
function option directs the Real-Time Workshop code generator to generate
a single function (optionally in a separate file) for the subsystem, and to call
that code for each identical subsystem in the model, if possible.

Note The Reusable function option yields code that is called from multiple
sites (hence reused) only when the Auto option would also do so. The
difference between these options’ behavior is that when reuse is not possible,
selecting Auto yields inlined code (or if circumstances prohibit inlining,
creates a function without arguments), while choosing Reusable function
yields a separate function (with arguments) that is called from only one site.

For a summary of code reuse limitations, see “Code Reuse Limitations” on
page 3-79.

Reusable Code and Referenced Models

Models that employ model referencing might require special treatment when
generating and using reusable code. The following sections identify general

3-73



3 Architecture Considerations

restrictions and discuss how reusable functions with inputs or outputs
connected to a referenced model’s root Inport or Outport blocks can affect
code reuse.

General Considerations

You can generate code for subsystems that contain referenced models using
the same procedures and options described in “Creating Subsystems” on page
3-37. However, the following restrictions apply to such builds:

e ERT S-functions do not support subsystems that contain a continuous
sample time.
® The Real-Time Workshop S-function target is not supported.

® The Tunable parameters table (set by using the Model Parameter
Configuration dialog box) is ignored; to make parameters tunable, you
must define them as Simulink parameter objects in the base workspace.

e All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function
target is selected, Build Subsystem behaves identically to Generate
S-function. (See “Automated S-Function Generation” on page 3-104.)

Code Reuse and Model Blocks with Root Inport or Outport
Blocks

Reusable functions with inputs or outputs connected to a referenced model’s
root Inport or Outport block can affect code reuse. This means that code for

certain atomic subsystems cannot be reused in a model reference context the
same way it is reused in a standalone model.

For example, suppose you create the following subsystem and make the
following changes to the subsystem’s block parameters:

e Select Treat as an atomic unit

¢ Set Real-Time Workshop system code to Reusable function
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>
In4 COutd
Zain

Suppose you then create the following model, which includes three instances
of the preceding subsystem.

mt 0wl —meint owt —pe] 01 ot

In1 Cut

Subsystermn 1 Subsystem 2 Subsystem 32

With the Inline parameters option enabled in this stand-alone model, the
Real-Time Workshop code generator can optimize the code by generating a
single copy of the function for the reused subsystem, as shown below.

void reuse_subsysi_Subsystemi (
real T rtu_O,
rtB_reuse_subsys1_Subsystem1 *localB)

/* Gain: '<S81>/Gain' */
localB->Gain_k = rtu_0 * 3.0;
}

When generated as code for a Model block (into an slprj project directory),
the subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystemi' */
void reuse_subsys1_Subsystemi(const real T *rtu_0,
rtB_reuse_subsys1_Subsystem1

*]localB)

{

/* Gain: '<S1>/Gain' */
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localB->Gain_w = (*rtu_0) * 3.0;

}

/* Output and update for atomic system: '<Root>/Subsystem2' */
void reuse_subsysi_Subsystem2(real T rtu_Int,
rtB_reuse_subsysi_Subsystem2

*localB)

{

/* Gain: '<82>/Gain' */
localB->Gain_y = rtu_In1 * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem3' */
void reuse_subsysi_Subsystem3(real T rtu_In1, real T *rty_O0)
{
/* Gain: '<S83>/Gain' */
(*rty_0) = rtu_Int * 3.0;
}

One way to make all the function signatures the same — and therefore assure
code reuse — is to insert Signal Conversion blocks. Place one between the
Inport and Subsystem1 and another between Subsystem3 and the Outport of
the referenced model.

Cutl

Signal Signal
Conversion Subsystemt Subsystemz Subsystems3 Conversiond

The result is a single reusable function:

void reuse_subsys2_Subsystemi(real T rtu_Int,
rtB_reuse_subsys2_ Subsystem1 *1localB)

{

/* Gain: '<S81>/Gain' */
localB->Gain_g = rtu_In1 * 3.0;
}
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You can achieve the same result (reusable code) with only one Signal
Conversion block. You can omit the Signal Conversion block connected to the
Inport block if you select the Pass scalar root inputs by value check box at
the bottom of the Model Referencing pane of the Configuration Parameters
dialog box. When you do this, you still need to insert a Signal Conversion
block before the Outport block.

Generating Reusable Code from Stateflow Charts

You can generate reusable code from a Stateflow chart, or from a subsystem
containing a chart, except in the following cases:

® The Stateflow chart contains exported graphical functions.

® The Stateflow model contains machine parented events.

Generating Reusable Code for Subsystems
Containing S-Function Blocks

Regarding S-Function blocks, there are several requirements that need
to be met in order for subsystems containing them to be reused. See
“Writing S-Functions That Support Code Reuse” on page 31-81 for the list
of requirements.

When you select the Reusable function option, two additional options are
enabled, Real-Time Workshop function name options and Real-Time
Workshop file name options. See the explanation of “Function Option” on
page 3-46 for descriptions of these options and fields. If you use these fields to
enter a function name and/or a file name, you must specify exactly the same
function name and file name for each instance of identical subsystems for the
Real-Time Workshop software to be able to reuse the subsystem code.
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Subsystem Reusable Function Code Generation Option

To request that the Real-Time Workshop software generate reusable
subsystem code,

1 Select the subsystem block. Then select Subsystem Parameters from the
Simulink model editor Edit menu. The Block Parameters dialog box opens.

Alternatively, you can open the Block Parameters dialog box by:
e Shift-double-clicking the subsystem block

¢ Right-clicking the subsystem block and selecting Block parameters
from the menu.

2 If the subsystem is virtual, select Treat as atomic unit. The Real-Time
Workshop system code menu becomes enabled.

If the system is already nonvirtual, the Real-Time Workshop system
code menu is already enabled.
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3 Select Reusable function from the Real-Time Workshop system code
menu as shown in Subsystem Reusable Function Code Generation Option
on page 3-78.

4 If you want to give the function a specific name, set the function name,
using the Real-Time Workshop function name options described in
“Real-Time Workshop Function Name Options Menu” on page 3-47.

If you do not choose the Real-Time Workshop function name Auto
option, and want code to be reused, you must assign exactly the same
function name to all other subsystem blocks that you want to share this
code.

5 If you want to direct the generated code to a specific file, set the file name
using any Real-Time Workshop file name option other than Auto
(options are described in “Real-Time Workshop File Name Options Menu”
on page 3-48).

In order for code to be reused, you must repeat this step for all other
subsystem blocks that you want to share this code, using the same file
name.

6 Click Apply and close the dialog box.

Code Reuse Limitations

The Real-Time Workshop software uses a checksum to determine whether
subsystems are identical. You cannot reuse subsystem code if:
e Multiple ports of a subsystem share the same source.

® A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
instances.

¢ The output of a subsystem is marked as a global signal.

® Subsystems contain identical blocks with different names or parameter
settings.

¢ The output of a subsystem is connected to a Merge block, and the output of
the Merge block is a custom storage class that is implemented in the C code
as memory that is nonaddressable (for example, BitField).
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® The input of a subsystem is nonscalar and has a custom storage class that
is implemented in the C code as memory that is nonaddressable.

* A masked subsystem has a parameter that is nonscalar and has a custom
storage class that is implemented in the C code as memory that is
nonaddressable.

Some of these situations can arise even when you copy and paste subsystems
within or between models or you construct them manually such that they are
identical. If you select Reusable function and the Real-Time Workshop
software determines that code for a subsystem cannot be reused, it generates
a separate function that is not reused. The code generation report can show
that the separate function is reusable, even if it is used by only one subsystem.
If you prefer that subsystem code be inlined in such circumstances rather
than deployed as functions, you choose Auto for the Real-Time Workshop
system code option.

Use of the following blocks in a subsystem can also prevent its code from
being reused:

Scope blocks (with data logging enabled)

S-Function blocks that fail to meet certain criteria

To File blocks (with data logging enabled)

To Workspace blocks (with data logging enabled)

Determining Why Subsystem Code Is Not Reused

Due to the limitations noted in “Code Reuse Limitations” on page 3-79, the
Real-Time Workshop software might not reuse generated code as you expect.
To determine why code generated for a subsystem is not reused,

1 Review the Subsystems section of the HTML code generation report

2 If you cannot determine why based on the report, compare subsystem
checksum data
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Reviewing the Subsystems Section of the HTML Code
Generation Report

If you determine that the Real-Time Workshop code generator does not
generate code for a subsystem as reusable code and you specified the
subsystem as reusable, examine the Subsystems section of the HTML code
generation report (see “Generating a Report” on page 22-2). The Subsystems
section contains

e A table that summarizes how nonvirtual subsystems were converted to
generated code

¢ Diagnostic information that explains why the contents of some subsystems
were not generated as reusable code

In addition to diagnosing exceptions, the Subsections section also indicates
the mapping of each noninlined subsystem in the model to functions or
reused functions in the generated code. For an example, open and build the
rtwdemo_atomic demo model.

Comparing Subsystem Checksum Data

If the HTML code generation report indicates that no code reuse exceptions
occurred and code for a subsystem you expect to be reused is not reused,
you can determine why by accessing and comparing subsystem checksum
data. The Real-Time Workshop software determines whether subsystems
are 1identical by comparing subsystem checksums, as noted in “Code Reuse
Limitations” on page 3-79.

Consider the demo model, rtwdemo_ssreuse.

T (F_ ::: outt | ——»{ 1

Out1
In2 551
In1
- out1
n
Out2
852
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SS1 and SS2 are instances of the same subsystem, and in both instances
the subsystem parameter Real-Time Workshop system code is set to
Reusable function

The following example demonstrates how to use the method
Simulink.SubSystem.getChecksum to get the checksum for a subsystem and
compare the results to determine why code is not reused.

1 Open the model rtwdemo_ssreuse and save a copy of the demo in a
directory where you have write access.

2 Select subsystem SS1 in the model window and in the command window
enter

SS1 = gcb;

3 Select subsystem SS2 in the model window and in the command window
enter

SS2 = gcb;

4 Use the method Simulink.SubSystem.getChecksum to get the checksum
for each subsystem. This method returns two output values: the checksum
value and details on the input used to compute the checksum.

[chksum1, chksumi1_details] =
Simulink.SubSystem.getChecksum(SS1);
[chksum2, chksum2_details] =
Simulink.SubSystem.getChecksum(SS2);

5 Compare the two checksum values. They should be equal based on the
subsystem configurations.

isequal(chksumi, chksum2)
ans =
1

6 To see how you can use Simulink.SubSystem.getChecksum to determine
why the checksums of two subsystems differ, change the data type mode of
the output port of SS1 so that it differs from that of SS2.
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a Look under the mask of SS1 by right-clicking the subsystem and
selecting Look Under Mask in the context menu. A block diagram of the
subsystem appears.

b Double-click the Lookup Table block to open the Block Parameters
dialog box.

¢ Click Signal Attributes.
d Select int8 for Output data type and click OK.

7 Get the checksum for SS1 again and compare the checksums for the two
subsystems again. This time, the checksums should not be equal.

[chksum1, chksumi1_details] =
Simulink.SubSystem.getChecksum(SS1);
isequal(chksumi1, chksum2)
ans =

0

8 After you determine that the checksums are different, find out why. The
Simulink engine uses information, such as signal data types, some block
parameter values, and block connectivity information, to compute the
checksums. To determine why checksums are different, you compare the
data used to compute the checksum values. You can get this information
from the second value returned by Simulink.SubSystem.getChecksum,
which is a structure array with four fields.

Look at the structure chksum1_details.

chksum1_details

chksum1_details =
ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [221x1 struct]
InterfaceChecksumItems: [91x1 struct]

ContentsChecksum and InterfaceChecksum are component
checksums of the subsystem checksum. The remaining two fields
ContentsChecksumItems and InterfaceChecksumItems contain the
checksum details.
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9 Determine whether a difference exists in the subsystem contents, interface,
or both. For example:

isequal(chksumi1_details.ContentsChecksum.Value,...
chksum2_details.ContentsChecksum.Value)
ans =
0
isequal(chksumi1_details.InterfaceChecksum.Value,...
chksum2_details.InterfaceChecksum.Value)
ans =
0

In this case, differences exist in both the contents and interface.
10 Write a script like the following to find the differences.

idxForCDiffs=[1];
for idx = 1:length(chksumi_details.ContentsChecksumItems)
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Identifier,
chksum2_details.ContentsChecksumItems(idx).Identifier))

disp(['Identifiers different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];

end

if (ischar(chksumi_details.ContentsChecksumItems(idx).Value))
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Value,

chksum2_details.ContentsChecksumItems(idx).Value))

disp(['String values different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end

end

if (isnumeric(chksum1_details.ContentsChecksumItems(idx).Value))
if (chksumi_details.ContentsChecksumItems(idx).Value ~= ...

chksum2_details.ContentsChecksumItems(idx).Value)

disp([ 'Numeric values different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end

end

end

idxForIDiffs=[1];

3-84



Creating Reusable Components

for idx = 1:length(chksumi1_details.InterfaceChecksumItems)
if (~strcmp(chksumi_details.InterfaceChecksumItems(idx).Identifier,
chksum2_details.InterfaceChecksumItems(idx).Identifier))

disp(['Identifiers different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];

end

if (ischar(chksumi_details.InterfaceChecksumItems(idx).Value))
if (~strcmp(chksumi_details.InterfaceChecksumItems(idx).Value,

chksum2_details.InterfaceChecksumItems(idx).Value))

disp(['String values different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];
end

end

if (isnumeric(chksumi_details.InterfaceChecksumItems(idx).Value))
if (chksumi_details.InterfaceChecksumItems(idx).Value ~= ...

chksum2_details.InterfaceChecksumItems(idx).Value)

disp(['Numeric values different for interface item ', num2str(idx)]);
idxForIDiffs=[idxForIDiffs, idx];
end

end

end

11 Run the script. The following example assumes you named the script
check_details.

check_details

String values different for contents item 64
String values different for contents item 75
String values different for contents item 81
String values different for interface item 46

The results indicate that differences exist for index items 64, 75, and 81 in
the subsystem contents and for item 46 in the subsystem interfaces.

12 Use the returned index values to get the handle , identifier, and value
details for each difference found.

chksum1_details.ContentsChecksumItems (64)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table Outputi'
Identifier: 'CompiledPortAliasedThruDataType'
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Value: 'int8'
chksum2_details.ContentsChecksumItems (64)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table Outputt'
Identifier: 'CompiledPortAliasedThruDataType'
Value: 'double'
chksumi1_details.ContentsChecksumItems(75)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'
Value: 'int8'
chksum2_details.ContentsChecksumItems(75)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'RunTimeParameter{'OutputValues'}.DataType'
Value: 'double'
chksumi1_details.ContentsChecksumItems(81)
ans =
Handle: 'my_ssreuse/SS1/Lookup Table'
Identifier: 'OutDataTypeMode'
Value: 'int8'
chksum2_details.ContentsChecksumItems(81)
ans =
Handle: 'my_ssreuse/SS2/Lookup Table'
Identifier: 'OutDataTypeMode'
Value: 'Same as input'
chksum1_details.InterfaceChecksumItems(46)
ans =
Handle: 'my ssreuse/SS1'
Identifier: 'CanonicalParameter(1).DataType'
Value: 'int8'
chksum2_details.InterfaceChecksumItems(46)
ans =
Handle: 'my ssreuse/SS2'
Identifier: 'CanonicalParameter(1).DataType'
Value: 'double'

As expected, the details identify the Lookup Table block and data type
parameters as areas on which to focus for debugging a subsystem reuse
issue.
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13 Correct the problem by changing the output data type mode for the
subsystems such that they match.
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Supporting Shared Utility Directories in the Build Process

The shared utility directories (slprj/target/_sharedutils) typically store
generated utility code that is common to a top model and the models it
references. You can also force the build process to use a shared utilities
directory for a standalone model. See Chapter 38, “Setting Up Runtime
Logging to MAT-Files” for details.

If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Support for the shared utilities directory is a necessary, but not
sufficient, condition for supporting model reference builds. See “Supporting
Optional Features” to learn about additional updates that are needed for
supporting model reference builds.

The exact syntax of the changes can vary due to differences in the make utility
and compiler/archive tools used by your target. The examples below are based
on the Free Software Foundation’s GNU® make utility. You can find the
following updated TMF examples for GNU and Microsoft® Visual C++® make
utilities in the GRT and ERT target directories:
e GRT: matlabroot/rtw/c/grt/

= grt_lcc.tmf

= grt_vc.tmf

= grt_unix.tmf
e ERT: matlabroot/rtw/c/ert/

= ert_lcc.tmf

= ert_vc.tmf

= ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.
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Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and model reference simulation targets. Your target does not
need to handle these cases.

Modifying Template Makefiles to Support Shared
Utilities

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC
SHARED_SRC_DIR
SHARED_BIN_DIR
SHARED_LIB

| >SHARED_SRC< |
| >SHARED_SRC_DIR<|
| >SHARED_BIN_DIR<|
| >SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED_L1IB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs use the same path, as in the following
expansions.

SHARED_SRC_DIR
SHARED_BIN_DIR

../slprj/ert/_sharedutils
../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.
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SHARED_INCLUDES =

ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR)
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED _OBJS = $(addsuffix .o, $(basename $(SHARED SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -0 $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED BIN DIR)/%.0 : $(SHARED SRC_DIR)/%.cC

$(CC) -c $(CFLAGS) $(SHARED OUTPUT OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following
example is based on The Open Group UNIX platforms.

$(SHARED LIB) : $(SHARED OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(0BJS) $(LIBS) $(SHARED LIB)

$(LD) $(LDFLAGS) -0 $@ $(LINK OBJS) $(LIBS) $(SHARED LIB))\
$(SYSLIBS)

@echo "### Created executable: $(MODEL)"



Supporting Shared Utility Directories in the Build Process

9 Remove any explicit reference to rt_nonfinite.c or rt_nonfinite.cpp
from your TMF. For example, change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS $ (RTWLOG)
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Creating Component Object Libraries and Enhancing
Simulation Performance

S-functions are an important class of target for which the Real-Time
Workshop product can generate code. The ability to encapsulate a subsystem
into an S-function allows you to increase its execution efficiency and facilitate
code reuse.

The following sections describe the properties of S-function targets and
demonstrate how to generate them. For more details on the structure of
S-functions, see the Simulink Writing S-Functions documentation.

In this section...

“Introduction” on page 3-92

“Creating an S-Function Block from a Subsystem” on page 3-95
“Tunable Parameters in Generated S-Functions” on page 3-101
“Automated S-Function Generation” on page 3-104

“System Target File and Template Makefiles” on page 3-108
“Checksums and the S-Function Target” on page 3-108
“S-Function Target Limitations” on page 3-109

Introduction

e “S.Function Target Overview” on page 3-92
¢ “Required Files for S-Function Deployment” on page 3-94
* “Sample Time Propagation in Generated S-Functions” on page 3-95

® “Choice of Solver Type” on page 3-95

S-Function Target Overview

Using the S-function target, you can build an S-function component and use
it as an S-Function block in another model. The S-function code format
used by the S-function target generates code that conforms to the Simulink
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C MEX S-function application programming interface (API). Applications
of this format include

e Conversion of a model to a component. You can generate an S-Function
block for a model, m1. Then, you can place the generated S-Function
block in another model, m2. Regenerating code for m2 does not require
regenerating code for m1.

® Conversion of a subsystem to a component. By extracting a subsystem to
a separate model and generating an S-Function block from that model,
you can create a reusable component from the subsystem. See “Creating
an S-Function Block from a Subsystem” on page 3-95 for an example of
this procedure.

® Speeding up simulation. In many cases, an S-function generated from a
model performs more efficiently than the original model.

® Code reuse. You can incorporate multiple instances of one model inside
another without replicating the code for each instance. Each instance will
continue to maintain its own unique data.

The S-function target generates noninlined S-functions. Within the same
release, you can generate an executable from a model that contains generated
S-functions by using the generic real-time or real-time malloc targets. This is
not supported when incorporating a generated S-function from one release
into a model that you build with a different release.

You can place a generated S-Function block into another model from which
you can generate another S-function format. This allows any level of nested
S-functions.

You should avoid nesting S-functions in a model or subsystem having

the same name as the S-function (possibly several levels apart). In such
situations, the S-function can be called recursively. The Real-Time Workshop
software currently does not detect such loops in S-function dependency, which
can result in aborting or hanging your MATLAB session.

To prevent this from happening, you should be sure to name the subsystem or
model to be generated as an S-function target uniquely, to avoid duplicating
any existing MEX filenames on the MATLAB path.
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Note While the S-function target provides a means to deploy an application
component for reuse while shielding its internal logic from inspection and
modification, the preferred solutions for protecting intellectual property in
distributed components are:

¢ The protected model, a referenced model from which all block and line
information has been eliminated using the Model Protection facility. For
more information, see “Protecting Referenced Models” in the Simulink
documentation.

e The Real-Time Workshop Embedded Coder shared library system target
file, used to generate a shared library for a model or subsystem for use
in a system simulation external to Simulink. For more information see
“Creating and Using Host-Based Shared Libraries” in the Real-Time
Workshop Embedded Coder documentation.

Required Files for S-Function Deployment

To deploy your generated S-Function block for inclusion in other models
for simulation, you need only provide the binary MEX-file object that was
generated in the current working directory when the S-Function block was
created:

subsys_sf.mexext

where subsys is the subsystem name and mexext is a platform-dependent
MEX-file extension (see mexext). For example, SourceSubsys_sf.mexw32.

To deploy your generated S-Function block for inclusion in other models for
code generation, you must provide all of the files that were generated in the
current working directory when the S-Function block was created:

® subsys_sf.c or .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)
® subsys_sf.h

® subsys_sf.mexext, where mexext is a platform-dependent MEX-file
extension (see mexext)
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® Subdirectory subsys_sfcn_rtw and its contents

Sample Time Propagation in Generated S-Functions

A generated S-Function block can inherit its sample time from the model in
which it is placed if certain criteria are met. Conditions that govern sample
time propagation for both Model blocks and generated S-Function blocks
are described in “Inheriting Sample Times” in the Simulink documentation
and “Inherited Sample Time for Referenced Models” on page 3-66 in the
Real-Time Workshop documentation.

To ensure that your generated S-Function block meets the criteria for
inheriting sample time, you must constrain the solver for the model from
which the S-Function block is generated. On the Solver configuration
parameters dialog pane, set Type to Fixed-step and Periodic sample time
constraint to Ensure sample time independent. If the model is unable to
inherit sample times, this setting causes the Simulink software to display an
error message when building the model. See “Periodic sample time constraint”
in the Simulink documentation for more information about this option.

Choice of Solver Type

If the model containing the subsystem from which you generate an S-function
uses a variable-step solver, the generated S-function contains zero-crossing
functions and will work properly only in models that use variable-step solvers.

If the model containing the subsystem from which you generate an S-function
uses a fixed-step solver, the generated S-function contains no zero-crossing
functions and the generated S-function will work properly in models that use
variable-step or fixed-step solvers.

Creating an S-Function Block from a Subsystem

This section demonstrates how to extract a subsystem from a model and
generate a reusable S-function component from it.

The next figure shows SourceModel, a simple model that inputs signals to a

subsystem. The subsequent figure shows the subsystem, SourceSubsys. The
signals, which have different widths and sample times, are
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A Step block with sample time 1
A Sine Wave block with sample time 0.5

A Constant block whose value 1s the vector [-2 3]

J_—.- Filter
Step SampTime = 1
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(2 —» —
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HferFon

Driscrate
Transfer Fon

EDE

offsets

SourceSubsys

The objective is to extract SourceSubsys from the model and build an
S-Function block from it, using the S-function target. The S-Function block

must perform identically to the subsystem from which it was generated.
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In this model, SourceSubsys inherits sample times and signal widths from its
input signals. However, S-Function blocks created from a model using the
S-function target will have all signal attributes (such as signal widths or
sample times) hard-wired. (The sole exception to this rule concerns sample
times, as described in “Sample Time Propagation in Generated S-Functions”
on page 3-95.)

In this example, you want the S-Function block to retain the properties of
SourceSubsys as it exists in SourceModel. Therefore, before you build the
subsystem as a separate S-function component, you must set the inport
sample times and widths explicitly. In addition, the solver parameters of the
S-function component must be the same as those of the original model. This
ensures that the generated S-function component will operate identically

to the original subsystem (see “Choice of Solver Type” on page 3-95 for an
exception to this rule).

To build SourceSubsys as an S-function component,

1 Create a new model and copy/paste SourceSubsys into the empty window.

2 Set the signal widths and sample times of inports inside SourceSubsys
such that they match those of the signals in the original model. Inport 1,
Filter, has a width of 1 and a sample time of 1. Inport 2, Xferfcn, has
a width of 1 and a sample time of 0.5. Inport 3, offsets, has a width of
2 and a sample time of 0.5.

3 The generated S-Function block should have three inports and one outport.
Connect inports and an outport to SourceSubsys, as shown in the next
figure.
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The correct signal widths and sample times are propagated to these ports.

4 Set the solver type, mode, and other solver parameters such that they

are identical to those of the source model. This is easiest to do if you use
Model Explorer.

5 In Model Explorer or the Configuration Parameters dialog box, click the
Real-Time Workshop tab.

6 Click Browse to open the System Target File Browser.

7 In the System Target File Browser, select the S-function target,
rtwsfcn.tlc, and click OK. The Real-Time Workshop pane appears as
follows.
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Real-Time Workshop

General | Repaort: I Comments Symbols Custom Code

Debug I Real-Time Workshe il »

—Target selection

System target File: Irtwsfcn.tlc

Erowse. .. |

Language: IC

Descripkion: S-function Target

=l

—Build proc:

Compiler optimization level: |Opt|m|zat\0ns off (Faster builds) LI

TLC options: I
MakeFile configuration

¥ Generate makefile

Make command: |make_rtw

Template makefile: Irtwsfcn_defau\t_tmf

I™ Generate code aonly

J Rewert | Help |

Build

Apply |

8 Select the Real-Time Workshop S-Function Code Generation
Options tab (in Model Explorer) or pane (in the Configuration Parameters

dialog box).

9 Make sure that Create New Model is selected, as shown in the next figure:
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Real-Time Workshop
Real-Time Workshop S-Function Code Generation Cptions | 4| F

¥ Create new madel
I Use walue for tunable parameters

™ Include custom source code

I™ Generate code only Build |
J Rewvert | Help | Apply |

When this option is selected, the build process creates a new model after it
builds the S-function component. The new model contains an S-Function
block, linked to the S-function component.

Click Apply if necessary.

10 Save the new model containing your subsystem, for example as
SourceSubsys.mdl.

11 Build the model.

12 The Real-Time Workshop build process builds the S-function component in
the working directory. After the build, a new model window is displayed.

RTW S-Function

Optionally you can save the generated model, for example as
SourceSubsys_Sfunction.mdl.
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13 You can now copy the Real-Time Workshop S-Function block from the new

model and use it in other models or in a library.

Note For a list of files required to deploy your S-Function block for
simulation or code generation, see “Required Files for S-Function
Deployment” on page 3-94.

The next figure shows the S-Function block plugged into the original model.
Given identical input signals, the S-Function block will perform identically
to the original subsystem.

| |

Step SampTime = 1

il
L]

Sine SampTime = 0.5

Scope

RTW S-Function
[23]

Const [2 3]

Generated S-Function Configured Like SourceModel

The speed at which the S-Function block executes is typically faster than the
original model. This difference in speed is more pronounced for larger and
more complicated models. By using generated S-functions, you can increase
the efficiency of your modeling process.

Tunable Parameters in Generated S-Functions
You can use tunable parameters in generated S-functions in two ways:

Use the Generate S-function feature (see “Automated S-Function
Generation” on page 3-104).

or

Use the Model Parameter Configuration dialog box (see Chapter 10,
“Parameter Considerations”) to declare desired block parameters tunable.
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Block parameters that are declared tunable with the auto storage class in the
source model become tunable parameters of the generated S-function.

These parameters do not become part of a generated model P (formerly

rtP) parameter data structure, as they would in code generated from other
targets. Instead, the generated code accesses these parameters by using MEX
API calls such as mxGetPr or mxGetData. Your code should access these
parameters in the same way.

For more information on MEX API calls, see “Writing S-Functions in C” in
the Simulink Writing S-Functions documentation and External Interfaces in
the MATLAB online documentation.

S-Function blocks created by using the S-function target are automatically
masked. The mask displays each tunable parameter in an edit field. By
default, the edit field displays the parameter by variable name, as in the
following example.

E Function Block Parameters: RTW 5-Fui x|

— 5-Function [magk)

Real-Time *Warkzhop generated S-function.

—Parameters

Generated S-function name [model_sf]:

ISourceSubsys_sf
[~ Shaow module list
K:

3

ak LCancel Apply

You can choose to display the value of the parameter rather than its variable
name by selecting Use Value for Tunable Parameters in the Options
section.



Creating Component Object Libraries and Enhancing Simulation Performance

Real-Time Workshop
Real-Time Workshop S-Function Code Generation Cptions | 4| F

¥ Create new madel
[ Use walue for tunable parameters

™ Include custom source code

I™ Generate code only Build |

J Rewvert | Help | Apply |

When this option is chosen, the value of the variable (at code generation time)
is displayed in the edit field, as in the following example.

] Function Block Parameters: RTW S-Fune |

—S-Function [maszk]

Real-Time Workshop generated S-function.

—Parameters

Generated S-function name [model_sf]:

ISourceSubsys_sf

ak LCancel Help Apply
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Automated S-Function Generation

The Generate S-function feature automates the process of generating an
S-function from a subsystem. In addition, the Generate S-function feature
presents a display of parameters used within the subsystem, and lets you
declare selected parameters tunable.

As an example, consider SourceSubsys, the same subsystem illustrated in
the previous example, “Creating an S-Function Block from a Subsystem” on
page 3-95. The objective is to automatically extract SourceSubsys from the
model and build an S-Function block from it, as in the previous example. In
addition, the gain factor of the Gain block should be set within SourceSubsys
to the workspace variable K (as illustrated in the next figure) and declare K as
a tunable parameter.

E Function Block Parameters: Gain x|

Gain
’7 Element-wize gain [y = F._*u) or matriz gain [y = K5 or p = 1K)

ET ISignaIData Typez | Farameter Data Types |

Gair:
3

Multiplication: I Element-wize(k. “u) ﬂ

Sample time [-1 for inkerited);

|

a4 I Cancel Help 2pply

To auto-generate an S-function from SourceSubsys with tunable parameter K,

1 Click the SourceSubsys subsystem to select it.

2 Select Generate S-function from the Real-Time Workshop submenu of
the Tools menu. This menu item is enabled when a subsystem is selected
in the current model.

Alternatively, you can right-click the subsystem and select Real-Time
Workshop > Generate S-Function from the subsystem block’s context
menu.
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3 The Generate S-function window is displayed (see the next figure). This
window shows all variables (or data objects) that are referenced as block
parameters in the subsystem, and lets you declare them as tunable.

The upper pane of the window displays three columns:
¢ Variable Name: name of the parameter.

e (Class: If the parameter is a workspace variable, its data type is shown.
If the parameter is a data object, its name and class is shown

¢ Tunable: Lets you select tunable parameters. To declare a parameter
tunable, select the check box. In the next figure, the parameter K is
declared tunable.

When you select a parameter in the upper pane, the lower pane shows all
the blocks that reference the parameter, and the parent system of each
such block.

«): Generate S-function for Subsystem: SourceSubsys i [m] 5]

rPicktunable parameters

Vatriahle Mame Clags Tunahble
Hk double I |~
hd
~Blocks using selected variahle
Elack Parent
-
I™ Use Embedded Coder Euild Cancel Help

Status
[ Selecttunable parameters and click Build

Generate S-Function Window

4 If you have installed the Real-Time Workshop Embedded Coder product,
and if the subsystem does not have a continuous sample time, the Use
Embedded Coder check box is available, as shown above. Otherwise,
it is grayed out. When Use Embedded Coder is selected, the build
process generates a wrapper S-function by using the Real-Time Workshop
Embedded Coder product. See “Generating S-Function Wrappers” in
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the Real-Time Workshop Embedded Coder documentation for more
information.

5 After selecting tunable parameters, click the Build button. This initiates
code generation and compilation of the S-function, using the S-function
target. The Create New Model option is automatically enabled.

6 The build process displays status messages in the MATLAB Command
Window. When the build completes, the tunable parameters window closes,
and a new untitled model window opens.

~ini =

File Edit VYiew Simulation Format Tools Help

DIEES LtBE (9 » =)

Filter

HferFen Outl

offsets

SourceSubsys

F|100% [ [ |odes 4

7 The model window contains an S-Function block with the same name
as the subsystem from which the block was generated (in this example,
SourceSubsys). Optionally, you can save the generated model containing
the generated block.

8 The generated code for the S-Function block is stored in the current
working directory. The following files are written to the top level directory:

® subsys_sTf.cor .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)

® subsys_sf.h

® subsys_sf.mexext, where mexext is a platform-dependent MEX-file
extension (for example, SourceSubsys_sf.mexw32)
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The source code for the S-function is written to the subdirectory
subsys_sfcn_rtw. The top-level .c or .cpp file is a stub file that simply
contains an include directive that you can use to interface other C/C++
code to the generated code.

Note For a list of files required to deploy your S-Function block for
simulation or code generation, see “Required Files for S-Function
Deployment” on page 3-94.

9 The generated S-Function block has inports and outports whose widths and
sample times correspond to those of the original model.

The following code, from the md10utputs routine of the generated S-function
code (in SourceSubsys_sf.c), shows how the tunable variable K is referenced
by using calls to the MEX API.

static void mdlOutputs(SimStruct *S, int_ T tid)

/* Gain: '<81>/Gain' incorporates:

* Sum: '<S1>/Sum'

*/

rtb_Gain_n[0] = (rtb_Product_p + (*(((const
real_T**)ssGetInputPortSignalPtrs(S, 2))[0]))) * (*(real_T
*) (mxGetData(K(S))));

rtb_Gain_n[1] = (rtb_Product_p + (*(((const
real_T**)ssGetInputPortSignalPtrs(S, 2))[1]))) * (*(real_T
*) (mxGetData(K(S))));

Notes
¢ In automatic S-function generation, the Use Value for Tunable
Parameters option is always set to its default value (off).

e A MEX S-function wrapper must only be used in the MATLAB version in
which the wrapper is created.
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System Target File and Template Makefiles

® “Introduction” on page 3-108
e “System Target File” on page 3-108
¢ “Template Makefiles” on page 3-108

Introduction

This section lists the target file and template makefiles that are provided
for use with the S-function target.

System Target File

e rtwsfcn.tlc

Template Makefiles

* rtwsfcn_lcc.tmf — Lcc compiler
® rtwsfcn_unix.tmf — The Open Group UNIX host
e rtwsfcn_vc.tmf — Microsoft Visual C++ compiler

* rtwsfcn_watc.tmf — Watcom C compiler

Checksums and the S-Function Target

The Real-Time Workshop software creates a checksum for a Simulink model
and uses the checksum during the build process for code reuse, model
reference, and external mode features.

The Real-Time Workshop software calculates a model’s checksum by
1 Calculating a checksum for each subsystem in the model. A subsystem’s

checksum is the combination of properties (data type, complexity, sample
time, port dimensions, and so forth) of the subsystem’s blocks.

2 Combining the subsystem checksums and other model-level information.
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An S-function can add additional information, not captured during the block
property analysis, to a checksum by calling the function ssSetChecksumval.
For the S-Function target, the value that gets added to the checksum is the

checksum of the model or subsystem from which the S-function is generated.

The Real-Time Workshop software applies the subsystem and model
checksums as follows:

® Code reuse — If two subsystems in a model have the same checksum, the
Real-Time Workshop build process generates code for one function only.

® Model reference — If the current model checksum matches the checksum
when the model was built, the Real-Time Workshop build process does
not rebuild submodels.

e External mode — If the current model checksum does not match the
checksum of the code that is running on the target, the Real-Time
Workshop build process generates an error.

S-Function Target Limitations

¢ “Limitations on Using Tunable Variables in Expressions” on page 3-109

¢ “Run-Time Parameters and S-Function Compatibility Diagnostics” on
page 3-110

¢ “Limitations on Using Goto and From Block” on page 3-110

¢ “Limitations on Building and Updating S-Functions” on page 3-112
¢ “Unsupported Blocks” on page 3-112

® “SimState Not Supported for Code Generation” on page 3-113

¢ “Profiling Code Performance Not Supported” on page 3-113

Limitations on Using Tunable Variables in Expressions

Certain limitations apply to the use of tunable variables in expressions. When
Real-Time Workshop software encounters an unsupported expression during
code generation, a warning appears and the equivalent numeric value is
generated in the code. For a list of the limitations, see “Tunable Expression
Limitations” on page 10-18.
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Run-Time Parameters and S-Function Compatibility Diagnostics

If you set the S-function upgrades needed option on the

Diagnostics > Compatibility pane of the Configuration Parameters dialog
box to warning or error, the Real-Time Workshop software reports that

an upgrade is needed for any S-function you create with the Generate
S-function feature. This is because the S-function target does not register
run-time parameters. Run-time parameters are only supported for inlined
S-Functions and the generated S-Function supports features that prevent

it from being inlined (for example, it can call or contain other noninlined
S-functions).

You can work around this limitation by setting the S-function upgrades
needed option to none. Alternatively, if you have a Real-Time Workshop
Embedded Coder license, select the Use Embedded Coder option on the
Generate S-function for Subsystem dialog box and generate an ERT
S-function. In this case, you do not receive the upgrade messages. However,
you cannot include ERT S-functions inside other generated S-functions
recursively.

Limitations on Using Goto and From Block

When using the S-function target, the Real-Time Workshop code generator
restricts I/0 to correspond to the root model’s Inport and Outport blocks (or the
Inport and Outport blocks of the Subsystem block from which the S-function
target was generated). No code is generated for Goto or From blocks.

To work around this restriction, create your model and subsystem with the
required Inport and Outport blocks, instead of using Goto and From blocks
to pass data between the root model and subsystem. In the model that
incorporates the generated S-function, you would then add needed Goto and
From blocks.

Example Before Work Around

® Root model with a From block and subsystem, Subsystem1
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EREE=S

SubSystermn

e Subsystem1 with a Goto block, which has global visibility and passes its

Fraom-

input to the From block in the root model

Constant

[1,2] plosble G2y, | 1 |double StunctionOutput
=

Integratar Goto

Sfunction Output }Mh SfunctionQutput

Tao Wotspace1

® Subsystem1 replaced with an S-function generated with the S-Function

target — a warning results when you run the model because the generated

S-function does not implement the Goto block

RTW S-Function

[SfunctionCutput]

SfunctionJutput

From1

Example After Work Around

An Outport block replaces the GoTo block in Subsystem1. When you plug the
generated S-function into the root model, its output connects directly to the

To Workspace block.

To Watspace
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[1.2] 2_.. 1;

Constant Integrator

RTW S-Function To Wotkspace

Limitations on Building and Updating S-Functions

The following limitations apply to building and updating S-functions using
the Real-Time Workshop S-function target:

You cannot build models that contain Model blocks using the Real-Time
Workshop S-function target. This also means that you cannot build a
subsystem module by right-clicking (or by using Tools > Real-Time
Workshop > Build subsystem) if the subsystem contains Model blocks.
This restriction applies only to S-functions generated using the S-function
target, not to ERT S-functions.

If you modify the model that generated an S-Function block, the Real-Time
Workshop build process does not automatically rebuild models containing
the generated S-Function block. This is in contrast to the practice of
automatically rebuilding models referenced by Model blocks when they
are modified (depending on the Model Reference Rebuild options
configuration setting).

Handwritten S-functions without corresponding TLC files must contain
exception-free code. For more information on exception-free code, see
“Exception Free Code” in the Simulink Writing S-Functions documentation.

Unsupported Blocks

The S-function format does not support the following built-in blocks:

MATLAB Fen block

S-Function blocks containing any of the following:



Creating Component Object Libraries and Enhancing Simulation Performance

= M-file S-functions (unless you supply a TLC file for C code generation)
= Fortran S-functions (unless you supply a TLC file for C code generation)
= C/C++ MEX S-functions that call into the MATLAB environment

® Scope block

* To Workspace block

simState Not Supported for Code Generation

You can use SimState within C-MEX and Level-2 M S-functions to save and
restore the simulation state (see “S-Function Compliance with the SimState”
in the Simulink documentation). However, SimState is not supported for code
generation, including with the Real-Time Workshop S-function target.

Profiling Code Performance Not Supported

Profiling the performance of generated code using the Target Language
Compiler (TLC) hook function interface described in “Profiling Code
Performance” on page 42-7 is not supported for the S-function target.
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Combining Multiple Models

If you want to combine several models (or several instances of the same
model) into a single executable, the Real-Time Workshop product offers
several options.

The most powerful solution is to use Model blocks. Each instance of a
Model block represents another model, called a referenced model. For code
generation, the referenced model effectively replaces the Model block that
references it. For details, see “Referencing a Model” and “Creating Model
Components” on page 3-51.

When developing embedded systems using the Real-Time Workshop
Embedded Coder product, you can interface the code for several models to
a common harness program by directly calling the entry points to each
model. However, Real-Time Workshop Embedded Coder target has certain
restrictions that might not be appropriate for your application. For more
information, see the Real-Time Workshop Embedded Coder documentation.

The GRT malloc target is a another possible solution. Using it is appropriate
in situations where you want do any or all of the following:

e Selectively control calls to more than one model

¢ Use dynamic memory allocation

¢ Include models that employ continuous states

® Log data to multiple files

¢ Run one of the models in external mode

To summarize by target, your options are as follows:

Target Support for Combining Multiple
Models?

Generic Real-Time Target (grt.tlc) | Yes (using Model blocks)

Generic Real-Time Target with Yes
dynamic memory allocation
(grt_malloc.tlc)
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Target Support for Combining Multiple
Models?
Real-Time Workshop Embedded Yes

Coder (ert.tlc)

S-function Target (rtwsfcn.tlc) No

Using GRT Malloc to Combine Models

This section discusses how to use the GRT malloc target to combine models
into a single program.

Building a multiple-model executable is fairly straightforward:

1 Generate and compile code from each of the models that are to be combined.

2 Combine the makefiles for each of the models into one makefile for creating
the final multimodel executable.

3 Create a combined simulation engine by modifying grt_malloc_main.c to
initialize and call the models correctly.

4 Run the combination makefile to link the object files from the models and
the main program into an executable.

Sharing Data Across Models

It 1s safest to use unidirectional signal connections between models. This
affects the order in which models are called. For example, if an output signal
from modelA is used as input to modelB, modelA's output computation should
be called first.

Timing Issues

You must generate all the models you are combining with the same solver
mode (either all single-tasking or all multitasking.) In addition, if the models
employ continuous states, the same solver should be used for all models.
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Because each model has its own model-specific definition of the rtModel
data structure, you must use an alternative mechanism to control model
execution, as follows:

® The file rtw/c/src/rtmcmacros.h provides an rtModel API clue that can
be used to call the rt_OneStep procedure.

® The rtmcmacros.h header file defines the rtModelCommon data structure,
which has the minimum common elements in the rtModel structure
required to step a model forward one time step.

® The rtmcsetCommon macro populates an object of type rtModelCommon by
copying the respective similar elements in the model’s rtModel object. Your
main routine must create one rtModelCommon structure for each model
being called by the main routine.

¢ The main routine will subsequently invoke rt_OneStep with a pointer to
the rtModelCommon structure instead of a pointer to the rtModel structure.

If the base rates for the models are not the same, the main program (such as
grt_malloc_main) must set up the timer interrupt to occur at the greatest
common divisor rate of the models. The main program is responsible for
calling each of the models at the appropriate time interval.

Data Logging and External Mode Support

A multiple-model program can log data to separate MAT-files for each model.

Only one of the models in a multiple-model program can use external mode.



Block Support
Considerations

¢ “Simulink Built-In Blocks That Support Code Generation” on page 4-2
e “Block Set Support for Code Generation” on page 4-23
e “User-Created Block Considerations” on page 4-24
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Simulink Built-In Blocks That Support Code Generation

The following tables summarize Real-Time Workshop and Real-Time
Workshop Embedded Coder support for Simulink blocks. There is a table for
each block library. For each block, the second column indicates any support
notes, which give information about the block for code generation. For more
detail, including data types each block supports, in the MATLAB Command
Window, type showblockdatatypetable, or consult the block reference pages.

Additional Math and Discrete: Additional Discrete on page 4-3
Additional Math and Discrete: Increment/Decrement on page 4-4
Continuous on page 4-4

Discontinuities on page 4-5

Discrete on page 4-6

Logic and Bit Operations on page 4-8

Lookup Tables on page 4-9

Math Operations on page 4-9

Model Verification on page 4-12

Model-Wide Utilities on page 4-13

Ports & Subsystems on page 4-14

Signal Attributes on page 4-15

Signal Routing on page 4-16

Sinks on page 4-17

Sources on page 4-18

User-Defined on page 4-22
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Additional Math and Discrete: Additional Discrete

Block

Support Notes

Fixed-Point State-Space

The Real-Time Workshop software does not
explicitly group primitive blocks that constitute
a nonatomic masked subsystem block in the
generated code. This flexibility allows for more
efficient code generation. In certain cases, you
can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Transfer Fen Direct Form 11

Transfer Fen Direct Form IT Time Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable External IC

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled Resettable

Unit Delay With Preview Enabled Resettable
External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

¢ The Real-Time Workshop software does

not explicitly group primitive blocks that
constitute a nonatomic masked subsystem
block in the generated code. This flexibility
allows for more efficient code generation. In
certain cases, you can achieve grouping by
configuring the masked subsystem block to
execute as an atomic unit by selecting the
Treat as atomic unit option.

Generated code might rely on memcpy or
memset (string.h).




4 piock Support Considerations

4-4

Additional Math and Discrete: Increment/Decrement

Block

Support Notes

Decrement Real World

Decrement Stored Integer

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Decrement Time To Zero

Supports code generation.

Decrement To Zero

Increment Real World

Increment Stored Integer

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

PID Controller

PID Controller (2DOF)

State-Space

Transfer Fen

Transport Delay

Variable Time Delay

Variable Transport Delay

Zero-Pole

Continuous
Block Support Notes
Derivative ® Consider using the Simulink Model Discretizer to map
Integrator continuous blocks into discrete equivalents that support

code generation. To start the Model Discretizer, select
Tools > Control Design > Model Discretizer.

® Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.
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Discontinuities

Block Support Notes

Backlash Generated code might rely on memcpy or memset (string.h).

Coulomb and Viscous The Real-Time Workshop software does not explicitly group
Friction primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Dead Zone Supports code generation.

Dead Zone Dynamic The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Hit Crossing Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Quantizer Supports code generation.

Rate Limiter Cannot use inside a triggered subsystem hierarchy.

Rate Limiter Dynamic The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.
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Discontinvuities (Continued)

Block Support Notes
Relay Support code generation.
Saturation

Saturation Dynamic

Wrap To Zero

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Discrete
Block Support Notes
Difference ® The Real-Time Workshop software does not explicitly group

primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

® Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

Discrete Derivative

¢ Generated code might rely on memcpy or memset (string.h).

® Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete Filter

Discrete FIR Filter

Support code generation.
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Discrete (Continued)

Block

Support Notes

PID Controller

PID Controller (2DOF)

® Generated code might rely on memcpy or memset (string.h).

® Depends on absolute time when used inside a triggered

subsystem hierarchy.

Discrete State-Space

Discrete Transfer Fen

Discrete Zero-Pole

Generated code might rely on memcpy or memset (string.h).

Discrete-Time Integrator

Depends on absolute time when used inside a triggered subsystem

hierarchy.

First-Order Hold

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Integer Delay

Memory

Tapped Delay

Support code generation.

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fcn Real Zero

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Unit Delay

Generated code might rely on memcpy or memset (string.h).

Zero-Order Hold

Supports code generation.
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Logic and Bit Operations

Block Support Notes
Bit Clear Support code generation.
Bit Set

Bitwise Operator

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change Generated code might rely on memcpy or memset (string.h).

Detect Decrease

Detect Fall Negative

Detect Fall Nonpositive

Detect Increase

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits Support code generation.

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic
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Lookup Tables

Block

Support Notes

Cosine

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Direct Lookup Table (n-D)

Interpolation Using
Prelookup

Lookup Table

Lookup Table (2-D)

Lookup Table (n-D)

Lookup Table Dynamic

Prelookup

Support code generation.

Sine

The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Math Operations

Block Support Notes
Abs Support code generation.
Add

Algebraic Constraint

Ignored during code generation.
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Math Operations (Continued)

Block Support Notes
Assignment Support code generation.
Bias

Complex to
Magnitude-Angle

Complex to Real-Imag

Divide

Dot Product

Gain

Magnitude-Angle to
Complex

Math Function (10" u)

Math Function (conj)

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (log10)

Math Function
(magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (sqrt)

Math Function (1/sqrt)
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Math Operations (Continued)

Block Support Notes

Math Function (transpose)

Matrix Concatenate

MinMax

MinMax Running
Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reshape

Rounding Function

Sign

Sine Wave Function ® Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.

® Depends on absolute time when used inside a triggered

subsystem hierarchy.

Slider Gain Support code generation.

Squeeze

Subtract

Sum

Sum of Elements

Trigonometric Function Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support the
functions, the Real-Time Workshop software issues a warning
message for the block and the generated code fails to link.
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Math Operations (Continued)

Block Support Notes

Unary Minus Support code generation.

Vector Concatenate

Weighted Sample Time
Math

Model Verification

Block Support Notes
Assertion Supports code generation.
Check Discrete Gradient Not recommended for production code. Relates to resource limits

and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Check Dynamic Gap Support code generation.

Check Dynamic Lower
Bound

Check Dynamic Range

Check Dynamic Upper
Bound
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Model Verification (Continued)

Block Support Notes
Check Input Resolution Not recommended for production code. Relates to resource limits
Check Static Gap and restrictions on speed and memory often found in embedded

systems. Generated code can contain dynamic allocation and
Check Static Lower Bound | freeing of memory, recursion, additional memory overhead, and
Check Static Range widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
Check Static Upper Bound | smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Model-Wide Utilities

Block Support Notes
Block Support Table Ignored during code generation.
DocBlock Uses the template symbol you specify for the RTW Embedded

Coder Flag block parameter to add comments to generated
code. Requires a Real-Time Workshop Embedded Coder license.
For more information, see “Using a Simulink DocBlock to Add a
Comment”.

Model Info Ignored during code generation.

Time-Based Linearization

Trigger-Based
Linearization
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Ports & Subsystems

Block Support Notes

Atomic Subsystem Support code generation.

CodeReuse Subsystem

Configurable Subsystem
Enable

Enabled Subsystem

Enabled and Triggered
Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Subsystem
If

If Action Subsystem
Model

Subsystem
Switch Case

Switch Case Action
Subsystem

Triggered Subsystem
While Iterator Subsystem
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Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion
Inherited

Data Type Duplicate

Data Type Propagation

Data Type Scaling Strip

Support code generation.

IC

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Probe

Supports code generation.

Rate Transition

® Generated code might rely on memcpy or memset (string.h).

¢ Cannot use inside a triggered subsystem hierarchy.

Signal Conversion

Signal Specification

Weighted Sample Time

Width

Support code generation.
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Signal Routing

Block Support Notes

Bus Assignment Support code generation.

Bus Creator

Bus Selector

Data Store Memory
Data Store Read
Data Store Write

Demux

Environment Controller Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

From Support code generation.
Goto
Goto Tag Visibility

Index Vector

Manual Switch Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

4-16



Simulink Built-In Blocks That Support Code Generation

Signal Routing (Continued)

Block Support Notes

Merge When multiple signals connected to a Merge block have a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch Support code generation.

Mux

Selector

Switch Generated code might rely on memcpy or memset (string.h).
Sinks

Block Support Notes

Display Ignored for code generation.

Floating Scope

Outport (Outl) Supports code generation.
Scope Ignored for code generation.
Stop Simulation ¢ Not recommended for production code. Relates to resource limits

and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

® Generated code stops executing when the stop condition is true.

Terminator Supports code generation.
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Sinks (Continued)

Block

Support Notes

To File

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

To Workspace

XY Graph

Ignored for code generation.

Sources

Block

Support Notes

Band-Limited White Noise

Cannot use inside a triggered subsystem hierarchy.

Chirp Signal

Clock

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Constant

Supports code generation.
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Sources (Continued)

Block

Support Notes

Counter Free-Running

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Counter Limited

¢ The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

¢ Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

Digital Clock

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Enumerated Constant

Supports code generation.
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Sources (Continued)

Block Support Notes

From File Ignored for code generation.

From Workspace

Ground Support code generation.

Inport (In1)

Pulse Generator Cannot use inside a triggered subsystem hierarchy. Does not refer
to absolute time when configured for sample-based operation.
Depends on absolute time when in time-based operation.

Ramp Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Random Number Supports code generation.

Repeating Sequence ® Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

¢ Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.
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Sources (Continued)

Block Support Notes
Repeating Sequence ¢ The Real-Time Workshop software does not explicitly group
Interpolated primitive blocks that constitute a nonatomic masked subsystem

block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute
as an atomic unit by selecting the Treat as atomic unit option.

¢ (Cannot use inside a triggered subsystem hierarchy.

Repeating Sequence Stair The Real-Time Workshop software does not explicitly group
primitive blocks that constitute a nonatomic masked subsystem
block in the generated code. This flexibility allows for more
efficient code generation. In certain cases, you can achieve
grouping by configuring the masked subsystem block to execute as
an atomic unit by selecting the Treat as atomic unit option.

Signal Builder Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Signal Generator

Sine Wave ® Depends on absolute time when used inside a triggered
subsystem hierarchy.

® Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.
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Sources (Continued)

Block

Support Notes

Step

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
correct and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Uniform Random Number

Supports code generation.

User-Defined

Block Support Notes

Embedded MATLAB Support code generation.

Function

Fen

Level-2 M-File S-Function | Ignored during code generation.

MATLAB Fen Consider using the Embedded MATLAB Function block instead.

S-Function

S-Function Builder

S-functions that call into MATLAB are not supported for code
generation. See “User-Created Block Considerations” on page 4-24
for advice on generating optimized user-defined blocks.
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Block Set Support for Code Generation

Several products that include blocks are available for you to consider for
code generation. However, before using the blocks for one of these products,
consult the documentation for that product to confirm whether any, all, or a
subset of blocks support code generation.
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User-Created Block Considerations

e [f possible, use one of the following mechanisms to automate block creation:

= Legacy Code Tool (see “Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool” in the Simulink documentation)

= S-Function Builder block (see the block description)

¢ [fyou create a block from an S-function, rather than as a masked subsystem

of built-in Simulink blocks, inline the S-function, using a Target Language
Compiler (TLC) file. The easiest way to inline external code is to use the
Legacy Code Tool. For more information, see “Inlining S-Functions with
TLC” in the Target Language Compiler documentation and the following
Simulink topics:

= “Creating Custom Blocks”
= “Selecting an S-Function Implementation”

= “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool”

If you create a block for a model for which generated code is intended for
production deployment, avoid:

= Accessing absolute time values. If a block depends on absolute time and
the time value reaches the largest value that can be represented by the
data type used by the timer to store time, the timer overflows and the
logged time or block output is no longer correct. For more information,
see“Using Timers” on page 5-70.

= Avoid using continuous sample times. Although you can generate
code for blocks that use continuous time (for example, if you specify a
fixed-step ODE solver), the execution performance and stability of code
generated from models that do not use continuous sample times is much
better. For more information, see “Using Discrete and Continuous Time”.

If possible, avoid creating multirate S-function blocks. Such blocks have
complex data handling requirements when you use them in a multitasking
solver mode. For more information, see “Creating Multitasking-Safe,
Multirate, Port-Based Sample Time S-Functions” on page 31-83.
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The following sections explain and illustrate how the Simulink and Real-Time
Workshop products handle multirate (mixed-rate) models, depending

on whether code is being generated for single-tasking or multitasking
environments.

“Introduction” on page 5-2
¢ “Single-Tasking and Multitasking Execution Modes” on page 5-3
¢ “Handling Rate Transitions” on page 5-13

¢ “Example: Single-Tasking and Multitasking Execution of a Model” on page
5-27

¢ “Handling Asynchronous Events” on page 5-34
¢ “Using Timers” on page 5-70
¢ “Configuring Scheduling” on page 5-83
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Introduction

Simulink models run at one or more sample times. The Simulink product
provides considerable flexibility in building multirate systems, that is,
systems with more than one sample time. However, this same flexibility
also allows you to construct models for which the code generator cannot
generate correct real-time code for execution in a multitasking environment.
To make multirate models operate correctly in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the
Simulink engine to modify the model for you. In general, the modifications
involve placing Rate Transition blocks between blocks that have unequal
sample times. The following sections discuss issues you must address to
use a multirate model successfully in a multitasking environment. For a
comprehensive discussion of sample times, including rate transitions, see
“Working with Sample Times” in the Simulink User’s Guide.
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Single-Tasking and Multitasking Execution Modes

In this section...

“Introduction” on page 5-3

“Executing Multitasking Models” on page 5-5

“Multitasking and Pseudomultitasking Modes” on page 5-6
“Building a Program for Multitasking Execution” on page 5-9
“Single-Tasking Mode” on page 5-9

“Building a Program for Single-Tasking Execution” on page 5-10
“Model Execution and Rate Transitions” on page 5-10
“Simulating Models with the Simulink Product” on page 5-11
“Executing Models in Real Time” on page 5-11

“Single-Tasking Versus Multitasking Operation” on page 5-12

Introduction

There are two execution modes for a fixed-step Simulink model: single-tasking
and multitasking. These modes are available only for fixed-step solvers. To
select an execution mode, use the Tasking mode for periodic sample
times menu on the Solver pane of the Configuration Parameters dialog

box. Auto mode (the default) applies multitasking execution for a multirate
model, and otherwise selects single-tasking execution. You can also select
SingleTasking or MultiTasking execution explicitly.

Execution of models in a real-time system can be done with the aid of a
real-time operating system, or it can be done on a bare-board target, where
the model runs in the context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX or Microsoft Windows
systems) is multitasking does not guarantee that your program can execute in
real time. This is because it is not guaranteed that the program can preempt

other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at
any given time, an interrupt service routine (ISR) must perform the steps of
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saving the processor context, executing the model code, collecting data, and
restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic
context switching and task scheduling. This simplifies the operations

performed by the ISR. In this case, the ISR simply enables the model execution
task, which 1s normally blocked. The next figure illustrates this difference.

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

Save Context

Y

Execute Model

Y

Collect Data

|

Restore Context

Program execution using an
interrupt service routine
(bareboard, with no real-time
operating system). See the
grt target for an example.

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

semGive

Context
Switch

P2

Program execution using a real-time
operating system primitive. See the
Tornado raget for an example.

Model Execution
Task

semTake

¥

Execute Model

v

Collect Data
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Executing Multitasking Models

In cases where the continuous part of a model executes at a rate that is
different from the discrete part, or a model has blocks with different sample
rates, the Simulink engine assigns each block a task identifier (tid) to
associate the block with the task that executes at the block’s sample rate.

You set sample rates and their constraints on the Solver pane of the
Configuration Parameters dialog box. To generate code with the Real-Time
Workshop software, you must select Fixed-step for the solver type. Certain
restrictions apply to the sample rates that you can use:

¢ The sample rate of any block must be an integer multiple of the base (that
1s, the fastest) sample period.

® When Periodic sample time constraint is unconstrained, the base
sample period is determined by the Fixed step size specified on the
Solvers pane of the Configuration parameters dialog box.

® When Periodic sample time constraint is Specified, the base rate
fixed-step size is the first element of the sample time matrix that you
specify in the companion option Sample time properties. The Solver
pane from the demo model rtwdemo_mrmtbb shows an example.
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— Simulation time

Start time: ||:|.|:|

Stop time: | 10.0

— Solver options

Type: IFixeu:I -step

Fixed-step size {fundamental sample time): Iaut-:u

ll Saolver: IDisn:rete (no continuous states) ll

Sample time properties:

—Tasking and sample time options

Perindic sample time constraint: ISpen:iﬁEd ;I

Tasking mode for periodic sample times: IMthTasking LI
[ Automatically handle rate transition for data transfer

™ Higher priority value indicates higher task priority

| [[1,0,01;[2,0,11;]

Continuous blocks always execute by using an integration algorithm that
runs at the base sample rate. The base sample period is the greatest
common denominator of all rates in the model only when Periodic sample
time constraint is set to Unconstrained and Fixed step size is Auto.

The continuous and discrete parts of the model can execute at different
rates only if the discrete part is executed at the same or a slower rate than
the continuous part and is an integer multiple of the base sample rate.

Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks
with the fastest sample rates are executed by the task with the highest
priority, the next fastest blocks are executed by a task with the next higher
priority, and so on. Time available in between the processing of high-priority
tasks is used for processing lower priority tasks. This results in efficient
program execution.
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Where tasks are asynchronous rather than periodic, there may not necessarily
be a relationship between sample rates and task priorities; the task with

the highest priority need not have the fastest sample rate. You specify
asynchronous task priorities using Async Interrupt and Task Synchronization
blocks. You can switch the sense of what priority numbers mean by selecting
or deselecting the Solver option Higher priority value indicates higher
task priority.

In multitasking environments (that is, under a real-time operating system),
you can define separate tasks and assign them priorities. In a bare-board
target (that is, no real-time operating system present), you cannot create
separate tasks. However, Real-Time Workshop application modules
implement what is effectively a multitasking execution scheme using
overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently

in progress. When this happens, the current interrupt is preempted, the
floating-point unit (FPU) context is saved, and the higher priority interrupt
executes its higher priority (that is, faster sample rate) code. Once complete,
control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems

are handled by the Real-Time Workshop software in multitasking,
pseudomultitasking, and single-tasking environments.

5-7
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t0 t1 t2 t3 t4
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T Vertical arrows indicate sample time hits.
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Dotted lines with downward pointing
arrows indicate the release of control
to a lower priority task.

Dark gray areas indicate task execution.
Dotted lines with upward pointing

W Hashed areas indicate task preemption
N by a higher priority task.
arrows indicate preemption by a

higher priority task. Light gray areas indicate task execution
is pending.

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt O does not return until after
Interrupts 1, 2, and 3.
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Building a Program for Multitasking Execution

To use multitasking execution, select Auto (the default) or MultiTasking from
the Tasking mode for periodic sample times menu on the Solver pane
of the Configuration Parameters dialog box. This menu is active only if you
select Fixed-step as the solver type. Auto mode results in a multitasking
environment if your model has two or more different sample times. A model
with a continuous and a discrete sample time runs in single-tasking mode if
the fixed-step size is equal to the discrete sample time.

Single-Tasking Mode
You can execute model code in a strictly single-tasking manner. While this

mode is less efficient with regard to execution speed, in certain situations,
it can simplify your model.
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In single-tasking mode, the base sample rate must define a time interval that
1s long enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking
execution.

t0 t1 t2 t3 t4

A A A A A

Single-tasking system execution requires a base sample rate that is long
enough to execute one step through the entire model.

Building a Program for Single-Tasking Execution

To use single-tasking execution, select SingleTasking from the Tasking
mode for periodic sample times menu on the Solver pane of the
Configuration Parameters dialog box. If you select Auto, single-tasking is
used in the following cases:

¢ [f your model contains one sample time

¢ [If your model contains a continuous and a discrete sample time and the
fixed step size is equal to the discrete sample time

Model Execution and Rate Transitions

To generate code that executes correctly in real time, you (or the Simulink
engine) might need to identify and properly handle sample rate transitions
within the model. In multitasking mode, by default the Simulink engine
flags errors during simulation if the model contains invalid rate transitions,
although you can use the Multitask rate transition diagnostic to alter this
behavior. A similar diagnostic, called Single task rate transition, exists for
single-tasking mode.

To avoid raising rate transition errors, insert Rate Transition blocks between
tasks. You can request that the Simulink engine handle rate transitions
automatically by inserting hidden Rate Transition blocks. See “Automatic
Rate Transition” on page 5-18 for an explanation of this option.
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To understand such problems, first consider how Simulink simulations differ
from real-time programs.

Simulating Models with the Simulink Product

Before the Simulink engine simulates a model, it orders all the blocks
based upon their topological dependencies. This includes expanding virtual
subsystems into the individual blocks they contain and flattening the entire
model into a single list. Once this step is complete, each block is executed
in order.

The key to this process is the proper ordering of blocks. Any block whose
output 1s directly dependent on its input (that is, any block with direct
feedthrough) cannot execute until the block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time
step or from initial conditions specified as a block parameter. The output of
such a block is determined by a value stored in memory, which can be updated
independently of its input. During simulation, all necessary computations
are performed prior to advancing the variable corresponding to time. In
essence, this results in all computations occurring instantaneously (that is, no
computational delay).

Executing Models in Real Time

A real-time program differs from a Simulink simulation in that the program
must execute the model code synchronously with real time. Every calculation
results in some computational delay. This means the sample intervals cannot
be shortened or lengthened (as they can be in a Simulink simulation), which
leads to less efficient execution.

Consider the following timing figure.

t0 t1 t2

N A A

Time ———»
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Note the processing inefficiency in the sample interval t1. That interval
cannot be compressed to increase execution speed because, by definition,
sample times are clocked in real time.

You can circumvent this potential inefficiency by using the multitasking
mode. The multitasking mode defines tasks with different priorities to
execute parts of the model code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 5-6 for a
description of how this works. It is important to understand that section
before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all
computations must be executed within each clock period. This can result in
inefficient use of available CPU time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is
large and has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks
execute at a slower rate, multitasking can actually degrade performance. In
such a model, the overhead incurred in task switching can be greater than the
time required to execute the slower blocks. In this case, it is more efficient to
execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might
need to modify your Simulink model by adding Rate Transition blocks (or
instruct the Simulink engine to do so) to generate correct results. The next
section, “Handling Rate Transitions” on page 5-13, discusses issues related to
rate transition blocks.
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Handling Rate Transitions

In this section...

“Introduction” on page 5-13

“Data Transfer Problems” on page 5-15

“Data Transfer Assumptions” on page 5-16

“Rate Transition Block Options” on page 5-16

“Faster to Slower Transitions in a Simulink Model” on page 5-21
“Faster to Slower Transitions in Real Time” on page 5-21

“Slower to Faster Transitions in a Simulink Model” on page 5-23

“Slower to Faster Transitions in Real Time” on page 5-24

Introduction
Two periodic sample rate transitions can exist within a model:

e A faster block driving a slower block

¢ A slower block driving a faster block

The following sections concern models with periodic sample times with zero
offset only. Other considerations apply to multirate models that involve
asynchronous tasks. For details on how to generate code for asynchronous
multitasking, see “Handling Asynchronous Events” on page 5-34.

In single-tasking systems, there are no issues involving multiple sample
rates. In multitasking and pseudomultitasking systems, however, differing
sample rates can cause problems by causing blocks to be executed in the
wrong order. To prevent possible errors in calculated data, you must control
model execution at these transitions. When connecting faster and slower
blocks, you or the Simulink engine must add Rate Transition blocks between
them. Fast-to-slow transitions are illustrated in the next figure.
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—>
—» T=1s » T=2s
—>
Faster Slower
Block Block
becomes
—
.| Port-based: R _
:: T=1s | Tin = 1s; Tout = 2s » T=2s
Faster Rate Transition Slower
Block Block
Slow-to-fast transitions are illustrated in the next figure.
—>|
—»| T=2s p T=1s
—>
Slower Faster
Block Block
becomes
—>
.| Port-based: R B
3 T=2s —*Tin=2s;Tout=1s[ | T=1s
Slower Rate Transition Faster
Block Block

Note Although the Rate Transition block offers a superset of the capabilities
of the Unit Delay block (for slow-to-fast transitions) and the Zero-Order Hold
block (for fast-to-slow transitions), you should use the Rate Transition block
instead of these blocks.
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Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism
associated with data transfer between blocks running at different rates.

® Data integrity: A problem of data integrity exists when the input to a block

changes during the execution of that block. Data integrity problems can be
caused by preemption.

Consider the following scenario:
= A faster block supplies the input to a slower block.

= The slower block reads an input value V, from the faster block and
begins computations using that value.

= The computations are preempted by another execution of the faster
block, which computes a new output value V.

= A data integrity problem now arises: when the slower block resumes
execution, it continues its computations, now using the “new” input
value V.

Such a data transfer is called unprotected. “Faster to Slower Transitions in
Real Time” on page 5-21 shows an unprotected data transfer.

In a protected data transfer, the output V, of the faster block is held until
the slower block finishes executing.

Deterministic versus nondeterministic data transfer: In a deterministic
data transfer, the timing of the data transfer is completely predictable, as
determined by the sample rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability
of data, the sample rates of the blocks, and the time at which the receiving
block begins to execute relative to the driving block.

You can use the Rate Transition block to ensure that data transfers in your
application are both protected and deterministic. These characteristics are
considered desirable in most applications. However, the Rate Transition
block supports flexible options that allow you to compromise data integrity
and determinism in favor of lower latency. The next section summarizes
these options.
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Data Transfer Assumptions

When processing data transfers between tasks, the Real-Time Workshop
software assumes the following:

® Data transitions occur between a single reading task and a single writing
task.

® A read or write of a byte-sized variable is atomic.

® When two tasks interact through a data transition, only one of them can
preempt the other.

® For periodic tasks, the faster rate task has higher priority than the slower
rate task; the faster rate task always preempts the slower rate task.

e All tasks run on a single processor. Time slicing is not allowed.

® Processes do not crash or restart (especially while data is transferred
between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code
generation for real-time execution, as discussed below. For a complete block
description, see Rate Transition in the Simulink documentation.

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing
sample rates, the Rate Transition block automatically configures its input and
output sample rates for the appropriate type of transition; you do not need

to specify whether a transition is slow-to-fast or fast-to-slow (low-to-high or
high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is
the choice of data transfer mechanism to be used between the two rates. Your
choice 1s dictated by considerations of safety, memory usage, and performance.
As the Rate Transition block parameter dialog box in the next figure shows,
the data transfer mechanism is controlled by two options.
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[=IFunction Block Parameters: Rate Transition x|

—RateTransition

Handle transfer of data between parks operating at different rates, Configuration
options allow you to trade off transfer delay and code efficiency for safety and
determinism of data kransfer. The default configuration assures safe and deterministic
data transfer. The block's behavior depends on option settings andfor the sample
times af its input and output ports. Updating the block diagram causes text on the
block's icon to indicate its behavior as Fallows:

ZOH: Zero Order Hold

1fz: Unit Delay

Buf: Copy input to output under semaphaore contral
Db_buf: Copy input ko output, using double buffers
Copy: Unprotected copy From input to output

MoCp: Mo Operation

—Parameters

¥ Ensure data inkegrity during daka transFer

[V Ensure deterministic daka transFer (maximum delay)
Initial conditions:

o

Output port sample kime options: ISpeciFy LI

Cutput park sample kime:

f-1

Ok I Cancel | Help | Apply |

¢ Ensure data integrity during data transfer: When this option is
on, the integrity of data transferred between rates is guaranteed (the
data transfer is protected). When this option is off, data integrity is not
guaranteed (the data transfer is unprotected). By default, Ensure data
integrity during data transfer is on.

¢ Ensure deterministic data transfer (maximum delay): This option is
supported for periodic tasks with an offset of zero and fast and slow rates
that are multiples of each other. Enable this option for protected data
transfers (when Ensure data integrity during data transfer is on).
When this option is on, the Rate Transition block behaves like a Zero-Order
Hold block (for fast to slow transitions) or a Unit Delay block (for slow to
fast transitions). The Rate Transition block controls the timing of data
transfer in a completely predictable way. When this option is off, the data
transfer is nondeterministic. By default, Ensure deterministic data
transfer (maximum delay) is on for transitions between periodic rates
with an offset of zero; for asynchronous transitions, it cannot be selected.
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Thus the Rate Transition block offers three modes of operation with respect to
data transfer. In order of safety, from safest to least safe, these are

* Protected/Deterministic (default): This is the safest mode. The
drawback of this mode is that it introduces deterministic latency into the
system for the case of slow-to-fast periodic rate transitions. For that case,
the latency introduced by the Rate Transition block is one sample period of
the slower task. For the case of fast-to-slow periodic rate transitions, the
Rate Transition block introduces no additional latency.

* Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred
between rates. For fast-to-slow periodic rate transitions, a semaphore flag
1s used. The blocks downstream from the Rate Transition block always use
the latest available data from the block that drives the Rate Transition
block. Maximum latency is less than or equal to one sample period of the
faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage
of this mode is i1ts low latency.

¢ Unprotected/NonDeterministic: This mode is the least safe, and is
not recommended for mission-critical applications. The latency of this
mode is the same as for Protected/NonDeterministic mode, but memory
requirements are reduced since neither double-buffering nor semaphores
are needed. That is, the Rate Transition block does nothing in this mode
other than to pass signals through; it simply exists to notify you that a
rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data
transfer option off), the Rate Transition block does nothing other than
allow the rate transition to exist in the model.

Automatic Rate Transition

The Simulink engine can detect mismatched rate transitions in a multitasking
model and automatically insert Rate Transition blocks to handle them. To
instruct the engine to do this, select Automatically handle rate transition
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for data transfer on the Solver pane of the Configuration Parameters
dialog box.

The Automatically handle rate transition for data transfer option is off
by default. When you select it,

® The Simulink engine handles all transitions between periodic sample times
and asynchronous tasks.

¢ The Simulink engine inserts “hidden” Rate Transition blocks that are not
visible on the block diagram.

® The Real-Time Workshop software generates code for the automatically
inserted Rate Transition blocks that is identical to that generated for
manually inserted Rate Transition blocks.

e Automatically inserted Rate Transition blocks operate in protected mode
for periodic tasks and asynchronous tasks, which you cannot alter. For
periodic tasks, automatically inserted Rate Transition blocks operate
with the level of determinism specified by the Solver pane parameter
Deterministic data transfer. (The default setting is Whenever
possible, which ensures determinism for data transfers between periodic
sample-times that are related by an integer multiple; for more information,
see “Deterministic data transfer” in the Simulink reference documentation.)
To use other modes, you must insert Rate Transition blocks and set their
modes manually.

For example, in the following model SineWave2 has a Sample time of 2, and
SineWave3 has a Sample time of 3.

]

o
SineYave2
——»
—
Product Outl
[
&
SineYaved
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=] Real-Time Workshop Report

If Automatically handle rate transition for data transfer is on, the
Simulink engine inserts an invisible Rate Transition block between each Sine
Wave block and the Product block. The inserted blocks have the parameter
values necessary to reconcile the Sine Wave block sample times.

Inserted Rate Transition Block HTML Report. When the Simulink engine
has automatically inserted Rate Transition blocks into a model, after code
generation the optional HTML code generation report includes a List of
inserted blocks that describes the blocks. For example, the following report
describes the two Rate Transition blocks that the engine automatically inserts
into the previous model.

=lo]x]

Back

Contents

Summary

List ofmserted blocks
Remove hishizhting
Subsystems

Code mapping

Code reuse exceplions
Generated Source Files
RateBlocks.c
1t_nonfinite. ¢
RateBlocks.h

Farward |

List of inserted blocks

Inserted Block Source Destination Comment

Inserted to handle
data transfer
between tasks

=Roat=/SineWavel at | <Root=/Froduct at
outport 0 nport 0

RateTransition block:
<Root>TmpRTBAtProductinport]

Inserted to handle
data transfer
between tasks

= Roai=/SineWaved at | <Root=/Product at
outport 0 inport 1

RateTransition block:
<Root>TmpRTBAtProductInport?

o]

Cancel | Hep | |

Only automatically inserted Rate Transition blocks appear in a List of
inserted blocks. If no such blocks exist in a model, the HTML code
generation report does not include a List of inserted blocks.

Rate Transition Blocks and Continuous Time

The sample time at the output port of a Rate Transition block can only be
discrete or fixed in minor time step. This means that when a Rate Transition
block inherits continuous sample time from its destination block, it treats
the inherited sample time as Fixed in Minor Time Step. Therefore, the
output function of the Rate Transition block runs only at major time steps.
If the destination block sample time is continuous, Rate Transition block
output sample time is the base rate sample time (if solver is fixed-step), or
zero-order-hold-continuous sample time (if solver is variable-step).
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The next four sections describe cases in which Rate Transition blocks

are necessary for periodic sample rate transitions. The discussion and
timing diagrams in these sections are based on the assumption that the
Rate Transition block is used in its default (protected/deterministic) mode;
that is, the Ensure data integrity during data transfer and Ensure
deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct
feedthrough, the outputs of the faster block are always computed first. In
simulation intervals where the slower block does not execute, the simulation
progresses more rapidly because there are fewer blocks to execute. The next
figure illustrates this situation.

t0 t1 t2 3
— A A A A
—»| T=1s p T=2s
— T=1s| T=2s |T=1s|T=1s| T=2s |T=1s
Faster Slower
Block Block

A Simulink simulation does not execute in real time, which means that it is
not bound by real-time constraints. The simulation waits for, or moves ahead
to, whatever tasks are necessary to complete simulation flow. The actual time
interval between sample time steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate
for the fact that execution of the slower block might span more than one
execution period of the faster block. This means that the outputs of the faster
block can change before the slower block has finished computing its outputs.
The next figure shows a situation in which this problem arises (T = sample
time). Note that lower priority tasks are preempted by higher priority tasks
before completion.
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T=1s
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Faster
Block

T=2s ('
Slower 1 Sec A 5 é > A 5 A B
Block Task

Time >
@ The faster task (T=1s) completes.
@ Higher priority preemption occurs.

@ The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

In the above figure, the faster block executes a second time before the slower
block has completed execution. This can cause unpredictable results because
the input data to the slow task is changing. Data integrity is not guaranteed
in this situation.

To avoid this situation, the Simulink engine must hold the outputs of the 1
second (faster) block until the 2 second (slower) block finishes executing. The
way to accomplish this is by inserting a Rate Transition block between the

1 second and 2 second blocks. This guarantees that the input to the slower
block does not change during its execution, ensuring data integrity.

e
—>| T=1s (—pTin=1Tout=2—» T=2s
—>

Faster Block Rate Transition Slower Block

It is assumed that the Rate Transition block is used in its default
(protected/deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but
with the priority of the faster block.
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Adding a Rate Transition block ensures that the Rate Transition block
executes before the 2 second block (its priority is higher) and that its output
value 1s held constant while the 2 second block executes (it executes at the

slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine
again computes the output of the driving block first. During sample intervals
where only the faster block executes, the simulation progresses more rapidly.

The next figure shows the execution sequence.

t0 t1 t2 t3
—> A A N A
—| T=2s » T=1s
g T=2s |T=1s|T=1s| T=2s |T=1s[T=1s
Slower Faster
Block Block Time >

As you can see from the preceding figures, the Simulink engine can simulate
models with multiple sample rates in an efficient manner. However, a
Simulink simulation does not operate in real time.
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Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code
assigns the faster block a higher priority than the slower block. This means
the faster block is executed before the slower block, which requires special
care to avoid incorrect results.

t0 t2
A
2 Sec T=2s T=2s
Task N L D D
—>
— T=2s T=1s 2 t3 t4
— ' A A
Block Faster
Block 1 Sec T=1s T=1s T=1s
Task

v

Time

@ The faster block executes a second time prior
to the completion of the slower block.

@ The faster block executes before the slower block.

This timing diagram illustrates two problems:

® Execution of the slower block is split over more than one faster block
interval. In this case the faster task executes a second time before the
slower task has completed execution. This means the inputs to the faster
task can have incorrect values some of the time.

® The faster block executes before the slower block (which is backward from
the way a Simulink simulation operates). In this case, the 1 second block
executes first; but the inputs to the faster task have not been computed.
This can cause unpredictable results.

To eliminate these problems, you must insert a Rate Transition block between
the slower and faster blocks.



Handling Rate Transitions

—
—>»| T=2s —P{Tin=2 Tout=1p—p| T=1s
—
Slower Rate Transition Faster
Block Block

It 1s assumed that the Rate Transition block is used in its default

(protected/deterministic) mode.

The next figure shows the timing sequence that results with the added Rate
Transition block.

@\

T

RT

=2s update

[/

T

2s

RT
update

2 Sec

Task /'
t0
V' N

1 Sec

Task output T=1s

Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower
rate (2 seconds). The output of the Rate Transition block feeds the 1 second

Time

task blocks.

2 The Rate Transition update uses the output of the 2 second task to update

its internal state.

v
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3 The Rate Transition output in the 1 second task uses the state of the Rate
Transition that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating
at a slower rate and at the priority of the slower block. The input to the Rate
Transition block (which is the output of the slower block) is read after the
slower block completes executing.

The second problem is alleviated because the Rate Transition block executes
at a slower rate and its output does not change during the computation of the
faster block it is driving. The output portion of a Rate Transition block is
executed at the sample rate of the slower block, but with the priority of the
faster block. Since the Rate Transition block drives the faster block and has
effectively the same priority, it is executed before the faster block.

Note This use of the Rate Transition block changes the model. The output
of the slower block is now delayed by one time step compared to the output
without a Rate Transition block.
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Example: Single-Tasking and Multitasking Execution of a

Model

In this section...

“Introduction” on

“Single-Tasking Execution” on page 5-28

page 5-27

“Multitasking Execution” on page 5-30

Introduction

This section examines how a simple multirate model executes in both real
time and simulation, using a fixed-step solver. It considers the operation of
both SingleTasking and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the
six blocks of the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block)
has been forced into the order shown by assigning higher priorities to blocks F,
E, and D. The ordering shown is one possible valid execution ordering for this
model. (See “Simulating Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks.

In a real-time system, the execution order determines the order in which
blocks execute within a given time interval or task. This discussion treats the
model’s execution order as a given, because it is concerned with the allocation
of block computations to tasks, and the scheduling of task execution.
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L il e Tl ozt "\ e
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Note The discussion and timing diagrams in this section are based on
the assumption that the Rate Transition blocks are used in the default
(protected/deterministic) mode, with the Ensure data integrity during
data transfer and Ensure deterministic data transfer (maximum
delay) options on.

Single-Tasking Execution

This section considers the execution of the above model when the solver
Tasking mode is SingleTasking.

In a single-tasking system, if the Block reduction option on the
Optimization pane is on, fast-to-slow Rate Transition blocks are optimized
out of the model. The default case is shown (Block reduction on), so block B
does not appear in the timing diagrams in this section. For more information
about block reduction, see “Reducing the Number of Blocks in a Model” on
page 25-28.

The following table shows, for each block in the model, the execution order,
sample time, and whether the block has an output or update computation.
Block A does not have discrete states, and accordingly does not have an
update computation.

Execution Order and Sample Times (Single-Tasking)

Blocks

(in Execution Sample Time

Order) (in Seconds) Output Update
F 0.1 Y Y

E 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y
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Real-Time Single-Tasking Execution

The next figure shows the scheduling of computations when the generated
code 1s deployed in a real-time system. The generated program is shown
running in real time, under control of interrupts from a 10 Hz timer.

Output: [FEDAC FEA | FEA | |FEDAC |

(wait) v (wait) v v
Update: FEDC| | [FE || | FE| .. [FEDC]..
| | | . >
I | | I >
Time: 0.0 0.1 0.2 1.0

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks

execute their output computations; this is followed by update computations
for blocks that have states. Within a given time interval, output and update
computations are sequenced in block execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output
computations are followed by update computations.

The system spends some portion of each time interval (labeled “wait”) idling.
During the intervals when only the fast blocks execute, a larger portion

of the interval is spent idling. This illustrates an inherent inefficiency of
single-tasking mode.

Simulated Single-Tasking Execution

The next figure shows the execution of the model during the Simulink
simulation loop.
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Output: [FEA] [FEA [FEDAC

v v A\

y
Update: [FEDC] FE | [FEDC]..

| | | . R
| | | 1 v

Because time is simulated, the placement of ticks represents the iterations
of the simulation loop. Blocks execute in exactly the same order as in the
previous figure, but without the constraint of a real-time clock. Therefore
there is no idle time between simulated sample periods.

Multitasking Execution

This section considers the execution of the above model when the solver
Tasking mode is MultiTasking. Block computations are executed under
two tasks, prioritized by rate:

® The slower task, which gets the lower priority, is scheduled to run every
second. This is called the 1 second task.

® The faster task, which gets higher priority, is scheduled to run 10 times
per second. This is called the 0.1 second task. The 0.1 second task can
preempt the 1 second task.

The following table shows, for each block in the model, the execution order,
the task under which the block runs, and whether the block has an output
or update computation. Blocks A and B do not have discrete states, and
accordingly do not have an update computation.
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Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution
Order) Task Output | Update

F 0.1 second task Y Y
E 0.1 second task Y Y

D The Rate Transition block uses Y Y
port-based sample times.

Output runs at the output port
sample time under 0.1 second
task.

Update runs at input port sample
time under 1 second task.

For more information on
port-based sample times, see
“Inheriting Sample Times” in the
Simulink documentation.

A 0.1 second task

B The Rate Transition block uses Y N
port-based sample times.

Output runs at the output port
sample time under 0.1 second
task.

For more information on
port-based sample times, see
“Inheriting Sample Times” in the
Simulink documentation.

C 1 second task Y Y

<
Z

Real-Time Multitasking Execution

The next figure shows the scheduling of computations in MultiTasking
solver mode when the generated code is deployed in a real-time system. The
generated program is shown running in real time, as two tasks under control
of interrupts from a 10 Hz timer.
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Simulated Multitasking Execution

The next figure shows the Simulink execution of the same model, in
MultiTasking solver mode. In this case, the Simulink engine runs all blocks
in one thread of execution, simulating multitasking. No preemption occurs.
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Handling Asynchronous Events

In this section...

“Introduction” on page 5-34

“Handling Interrupts” on page 5-37

“Rate Transitions and Asynchronous Blocks” on page 5-52
“Using Timers in Asynchronous Tasks” on page 5-57

“Creating a Customized Asynchronous Library” on page 5-60

“Asynchronous Support Limitations” on page 5-69

Introduction

® “About Asynchronous Support” on page 5-34

® “Overview of Block Library for Wind River Systems VxWorks Real-Time
Operating System” on page 5-35

e “Accessing the VxWorks Block Library” on page 5-36
® “Generating Code with the VxWorks Library Blocks” on page 5-36

* “Demos and Additional Information” on page 5-36

About Asynchronous Support

Real-Time Workshop models are normally timed from a periodic interrupt
source (for example, a hardware timer). Blocks in a periodically clocked
single-rate model run at a timer interrupt rate (the base rate of the model).
Blocks in a periodically clocked multirate model run at the base rate or at
submultiples of that rate.

Many systems must also support execution of blocks in response to events that
are asynchronous with respect to the periodic timing source of the system. For
example, a peripheral device might signal completion of an input operation
by generating an interrupt. The system must service such interrupts
appropriately, for example, by acquiring data from the interrupting device.
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This chapter explains how to use blocks to model and generate code for
asynchronous event handling, including servicing of hardware-generated
Interrupts, maintenance of timers, asynchronous read and write operations,
and spawning of asynchronous tasks under a real-time operating system
(RTOS). Although the blocks target the Wind River Systems VxWorks
Tornado® RTOS, this chapter provides source code analysis and other
information you can use to develop blocks that support asynchronous event
handling for an alternative target RTOS.

Overview of Block Library for Wind River Systems VxWorks
Real-Time Operating System
The next figure shows the blocks in the VxWorks block library (vx1ib1).

Task
SimlRQ  IRQN
" f 'T ash'
Async Interrupt Taszh Syne
L [
o [
M [m m [
Frotected RT Unprotected RT

The key blocks in the library are the Async Interrupt and Task Sync blocks.
These blocks are targeted for the VxWorks Tornado operating system. You
can use them, without modification, to support VxWorks applications.

If you want to implement asynchronous support for an RTOS other than
VxWorks RTOS, guidelines and example code are provided that will help
you to adapt the VxWorks library blocks to target your RTOS. This topic is
discussed in “Creating a Customized Asynchronous Library” on page 5-60.

The VxWorks library includes blocks you can use to

® Generate interrupt-level code — Async Interrupt block
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Spawn a VxWorks task that calls a function call subsystem — Task Sync
block

Ensure data integrity when transferring data between blocks running as
different tasks — Protected RT block

Use an unprotected/nondeterministic mode when transferring data
between blocks running as different tasks — Unprotected RT block

For detailed descriptions of the blocks in the VxWorks library, see the
Real-Time Workshop Reference. The use of the Protected and Unprotected
Rate Transition blocks in asynchronous contexts is discussed in “Rate
Transitions and Asynchronous Blocks” on page 5-52. For general information
on rate transitions, see Chapter 5, “Scheduling Considerations”.

Accessing the VxWorks Block Library

The VxWorks library (vx1ib1) is part of the Real-Time Workshop library.
You can access the VxWorks library by opening the Simulink Library
Browser, clicking the Real-Time Workshop entry, and clicking VxWorks.
Alternatively, enter the MATLAB command vx1ib1.

Generating Code with the VxWorks Library Blocks

To generate a VxWorks compatible application from a model containing
VxWorks library blocks, select one of the following targets from the System
Target File Browser associated with the model:

e ert.tlc Real-Time Embedded Coder. This target is provided with the
Real-Time Workshop Embedded Coder product.

When using the ERT target with VxWorks library blocks, you must
select the Generate an example main program option, and select
VxWorksExample from the Target operating system menu.

® tornado.tlc Tornado (VxWorks) Real-Time Target. This target
1s included with the Real-Time Workshop product (see Chapter 33,
“Interfacing With a Real-Time Operating System ”).

Demos and Additional Information
Additional information relevant to the topics in this chapter can be found in
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® The rtwdemo_async model. To open this demo, type rtwdemo_async at the
MATLAB command prompt.

® Chapter 5, “Scheduling Considerations”, discusses general multitasking
and rate transition issues for periodic models.

e Chapter 33, “Interfacing With a Real-Time Operating System ”, discusses
the Tornado (VxWorks RTOS) target example.

® The Real-Time Workshop Embedded Coder documentation discusses
the Embedded Real-Time (ERT) target, including task execution and
scheduling.

® See your VxWorks system documentation for detailed information about
the VxWorks system calls mentioned in this chapter.

Handling Interrupts

® “Generating Interrupt Service Routines” on page 5-37

® “Spawning a Wind River Systems VxWorks Task” on page 5-45

Generating Interrupt Service Routines

To generate an interrupt service routine (ISR) associated with a specific Wind
River Systems VxWorks VME interrupt level, use the Async Interrupt block.
The Async Interrupt block enables the specified interrupt level and installs
an ISR that calls a connected function call subsystem.

You can also use the Async Interrupt block in a simulation. It provides an
input port that can be enabled and connected to a simulated interrupt source.

Connecting the Async Interrupt Block. To generate an ISR, connect an
output of the Async Interrupt block to the control input of

e A function call subsystem
® The input of a Task Sync block

® The input to a Stateflow chart configured for a function call input event
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The next figure shows an Async Interrupt block configured to service two
interrupt sources. The outputs (signal width 2) are connected to two function
call subsystems.
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Requirements and Restrictions. Note the following requirements and
restrictions:

® The Async Interrupt block supports VME interrupts 1 through 7.

¢ The Async Interrupt block requires a VxWorks Board Support Package
(BSP) that supports the following VxWorks system calls:

= sysIntEnable

= sysIntDisable

= intConnect

= intlLock

= intUnlock

= tickGet
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Performance Considerations. Execution of large subsystems at interrupt

level can have a significant impact on interrupt response time for interrupts

of equal and lower priority in the system. As a general rule, it is best to keep
ISRs as short as possible. Connect only function call subsystems that contain
a small number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function call subsystem to a VxWorks
task. The Task Sync block is placed between the Async Interrupt block and
the function call subsystem. The Async Interrupt block then installs the
Task Sync block as the ISR. The ISR releases a synchronization semaphore
(performs a semGive) to the task, and returns immediately from interrupt
level. The task is then scheduled and run by the VxWorks RTOS. See
“Spawning a Wind River Systems VxWorks Task” on page 5-45 for more
information.

Using the Async Interrupt Block in Simulation and Code Generation.
This section describes a dual-model approach to the development and
implementation of real-time systems that include ISRs. In this approach, you
develop one model that includes a plant and a controller for simulation, and
another model that only includes the controller for code generation. Using a
Simulink library, you can implement changes to both models simultaneously.
The next figure shows how changes made to the plant or controller, both of
which are in a library, are propagated to the models.

Blant Model .
| Plant | |Contro||er| an (for simulation)
Library: Changes made here Interrupt
affect both models. Block
_ (Simulation v
input enabled) Controller
Interrupt
Block Model
it } (for code generation)
Real-Time Workshop libra R nterrup
P 2 > Block 1
Controller

Dual-Model Use of Async Interrupt Block for Simulation and Code Generation
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A single-model approach is also possible. In this approach, the Plant
component of the model is active only in simulation. During code generation,
the Plant components are effectively switched out of the system and code is
generated only for the interrupt block and controller parts of the model. For
an example of this approach, see the rtwdemo_async model.

Dual-Model Approach: Simulation. The following block diagram shows a
simple model that illustrates the dual-model approach to modeling. During
simulation, the Pulse Generator blocks provide simulated interrupt signals.

Sim
Out e SimIRQ  IRQHN
R
Environment  Async Interropt
Controller f-call) l:l
Ot | ——
[ [ Ot
Count Unprotected RTA
f-call) l:flr
Dut ™
[m [ Outz
Count Unprotected RTZ

The simulated interrupt signals are routed through the Async Interrupt
block’s input port. Upon receiving a simulated interrupt, the block calls the
connected subsystem.

During simulation, subsystems connected to Async Interrupt block outputs
are executed in order of their VxWorks priority. In the event that two or more
interrupt signals occur simultaneously, the Async Interrupt block executes
the downstream systems in the order specified by their interrupt levels (Ievel
7 gets the highest priority). The first input element maps to the first output
element.

You can also use the Async Interrupt block in a simulation without enabling
the simulation input. In such a case, the Async Interrupt block inherits the
base rate of the model and calls the connected subsystems in order of their
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VxWorks priorities. (In effect, in this case the Async Interrupt block behaves
as if all inputs received a 1 simultaneously.)

Dual-Model Approach: Code Generation. In the generated code for
the sample model,

¢ Ground blocks provide input signals to the Environment Controller block

® The Async Interrupt block does not use its simulation input

The Ground blocks drive control input of the Environment Controller block
to ensure that no code is generated for that signal path. The Real-Time
Workshop code generator does not generate code for blocks that drive the
simulation control input to the Environment Controller block because that
path is not selected during code generation. However, the sample times of
driving blocks for the simulation input to the Environment Controller block
contribute to the sample times supported in the generated code. To avoid
including unnecessary sample times in the generated code, ensure that the
sample times of the blocks driving the simulation input are used in the model
where generated code is intended.

Sim
Out —e={SimIEQ  IRQH
R
Environment  Async Interropt
Controller f-call) l:l
Ot | ——
[ [ Ot
Count Unprotected RTA
f-call) l:flr
Dt W ——
[m [ Outz
Count Unprotected RT2

Standalone functions are installed as ISRs and the interrupt vector table
is as follows:
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Offset
192 &isr_numi_vec192()
193 &isr_num2_vec193()

Consider the code generated from this model, assuming that the Async
Interrupt block parameters are configured as shown in the next figure.

E! Function Block Parameters: Async Interrupk il
—wfarks Intermupt Block. [mask) (link)

Create WHE bazed Interupt Service Routing which will execute the downstream
subzystem or Task Block,

—Parameters
WhE interrupt number(z):
[(r2

WHE interrupt vector offset(s]:

|REEREE]

Simulink tazk priorty(s):
Jno1)

Preemption flagls): preemptable-1, non-preemptable-0
Jioop

¥ Manage cwn timer

Timer resolution [zeconds):
J1/80

Timer sizel 32bits ;I

¥ Enable simulation input:

Ok Cancel

Initialization Code

In the generated code, the Async Interrupt block installs the code in the
Subsystem blocks as interrupt service routines. The interrupt vectors for
IRQ1 and IRQ2 are stored at locations 192 and 193 relative to the base of the
interrupt vector table, as specified by the VME interrupt vector offset(s)
parameter.
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Installing an ISR requires two VxWorks calls, int_connect and
sysInt _Enable. The Async Interrupt block inserts these calls in the
model initialize function, as shown in the following code excerpt.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Connect and enable ISR function: isr_numi_vec192 */
if( intConnect (INUM_TO_IVEC(192), isr_numi_vec192, 0) != OK) {
printf("intConnect failed for ISR 1.\n");
}
sysIntEnable(1);

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Connect and enable ISR function: isr_num2_vec193 */

if( intConnect (INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK)
{

printf("intConnect failed for ISR 2.\n");
}

sysIntEnable(2);

The hardware that generates the interrupt is not configured by the Async
Interrupt block. Typically, the interrupt source is a VME I/0 board, which
generates interrupts for specific events (for example, end of A/D conversion).
The VME interrupt level and vector are set up in registers or by using jumpers
on the board. You can use the md1Start routine of a user-written device
driver (S-function) to set up the registers and enable interrupt generation on
the board. You must match the interrupt level and vector specified in the
Async Interrupt block dialog to the level and vector set up on the I/0 board.

Generated ISR Code

The actual ISR generated for IRQ1 is listed below.
/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_numi_vec192(void)
{

int_T lock;
FP_CONTEXT context;
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/* Use tickGet() as a portable tick counter example.
A much higher resolution can be achieved with a
hardware counter */

Async_Code_M->Timing.clockTick2 = tickGet();

/* disable interrupts (system is configured as non-ive) */
lock = intLock();

/* save floating point context */
fppSave (&context);

/* Call the system: <Root>/Subsystem A */
Count (0, 0);

/* restore floating point context */
fppRestore(&context);

/* re-enable interrupts */
intUnlock(lock);

}

There are several features of the ISR that should be noted:
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Because of the setting of the Preemption Flag(s) parameter, this ISR is
locked; that is, it cannot be preempted by a higher priority interrupt. The
ISR is locked and unlocked by the VxWorks int_lock and int_unlock
functions.

The connected subsystem, Count, is called from within the ISR.

The Count function executes algorithmic (model) code. Therefore, the
floating-point context is saved and restored across the call to Count.

The ISR maintains its own absolute time counter, which is distinct from
other periodic base rate or subrate counters in the system. Timing data is
maintained for the use of any blocks executed within the ISR that require
absolute or elapsed time.

See “Using Timers in Asynchronous Tasks” on page 5-57 for details.
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Model Termination Code

The model’s termination function disables the interrupts:

/* Model terminate function */
void Async_Code_terminate(void)

{
/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_numi_vec192 */
sysIntDisable(1);
/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_num2_vec193 */
sysIntDisable(2);

}

Spawning a Wind River Systems VxWorks Task

To spawn an independent VxWorks task, use the Task Sync block. The Task
Sync block is a function call subsystem that spawns an independent VxWorks

task. The task calls the function call subsystem connected to the output of
the Task Sync block.

Typically, the Task Sync block is placed between an Async Interrupt block
and a function call subsystem block or a Stateflow chart. Another example
would be to place the Task Sync block at the output of a Stateflow chart that
has an event, Output to Simulink, configured as a function call.

The Task Sync block performs the following functions:

¢ An independent task is spawned, using the VxWorks system call
taskSpawn. When the task is activated, it calls the downstream function
call subsystem code. The task is deleted using taskDelete during model
termination.

® A semaphore is created to synchronize the connected subsystem to the
execution of the Task Sync block.

® The spawned task is wrapped in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. When semTake is
first called, NO_WAIT is specified. This allows the task to determine whether

5-45



5 Scheduling Considerations

a second semGive has occurred prior to the completion of the function call
subsystem. This would indicate that the interrupt rate is too fast or the
task priority is too low.

® The Task Sync block generates synchronization code (for example,
semGive()). This code allows the spawned task to run; the task in turn
calls the connected function call subsystem code. The synchronization
code can run at interrupt level. This is accomplished by connecting the
Task Sync block to the output of an Async Interrupt block, which triggers
execution of the Task Sync block within an ISR.

e [If blocks in the downstream algorithmic code require absolute time, it can
be supplied either by the timer maintained by the Async Interrupt block,
or by an independent timer maintained by the task associated with the
Task Sync block.

For an example of how to use the Task Sync block, see the rtwdemo_async
demo. The block diagram for the model appears in the next figure. Before
reading the following discussion, open the demo model and double-click the
Generate Code button. You can then examine the generated code in the
HTML code generation report produced by the demo.

: Sim
20 Hz ISR. Ot = SIMIRQ IRON ¢
RTW
: -
Emvironment  Async Interrupt fcall () o
15Hz ISR Controller Out g e —Hom: 1)
Count Unprotected RT1
Task Sync
f-call ) =
C—»] out| w11
In1_60hz 4:! [m [m out?2
(2 —m - — Lall Protected RT2
In2_60_hz mm [ —
Protected RT4 Out2[—m mm]i} ‘Iumm 3 )
Out3
In3_60hz Unprotected RT2
Algorithm

In this model, the Async Interrupt block is configured for VME interrupts 1
and 2, using interrupt vector offsets 192 and 193. Interrupt 2 is connected to
the Task Sync block, which in turn drives the Algorithm subsystem. Consider
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the code generated from this model, assuming that the Task Sync block
parameters are configured as shown in the next figure.

=] Function Block Parameters: Task Sync x|
—w'orks Task Block [maszk] [link]
Creates a Task function which iz spawned as a separate Vyw/orks Task. The Task

function runs the code of the downstream function-call subsystem. “When this block is
run, a semaphore iz used to enable the task execution.

—Parameter

Tazk name [10 characters or less):
|Taskn

Simulink tazk priorty [0-255):
|E

Stack size [bytes]:
|6192

¥ Synchronize the data transfer of this task with the caller task

aK | Cancel | Apply |

Initialization Code. The Task Sync block generates initialization code
for initialization by Md1Start, which itself creates and initializes the
synchronization semaphore. It also spawns an independent task (taskO0).

/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */

/* Spawn task: TaskO with priority 50 */

if ((*(SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID =
semBCreate (SEM_Q_PRIORITY, SEM_EMPTY)) == NULL) {
printf("semBCreate call failed for block Task0.\n");

}

if ((rtwdemo_async_DWork.SFunction_IWORK.TaskID = taskSpawn("Task0",
50.0, VX_FP_TASK, 8192.0, (FUNCPTR)Tasko, 0, O, O, O, O, O, O,
0, 0, 0)) == ERROR) {
printf("taskSpawn call failed for block Task0.\n");

After spawning Task0, Md1Start connects and enables the ISR
(isr_num2_vec193) for interrupt 2:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Connect and enable ISR function: isr_numi_vec192 */
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if( intConnect (INUM_TO_IVEC(192), isr_numi_vec192, 0) != OK) {
printf("intConnect failed for ISR 1.\n");

}

sysIntEnable(1);

The ordering of these operations is significant. The task must be spawned
before the interrupt that activates it can be enabled.

Task and Task Synchronization Code. The function Task0, generated
by the Task Sync block, runs as a VxWorks task. The task waits for

a synchronization semaphore in an infinite for loop. If it obtains the
semaphore, it updates its task timer and calls the Algorithm subsystem.

For this demo, the Synchronize the data transfer of this task with the
caller task option of the Task Sync block is selected. Therefore, the timer
associated with the Task Sync block (rtM->Timing.clockTick3) is updated
with the value of the timer that is maintained by the Async Interrupt block
(rtM->Timing.clockTick4). Therefore, blocks within the Algorithm subsystem
use timer values based on the time of the most recent interrupt (not the most
recent activation of TaskO0).

/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */
/* Spawned with priority: 50 */
void TaskO(void)
{
/* Wait for semaphore to be released by system:
rtwdemo_async/Task Sync */
for(5;) {
if (semTake(*(SEM_ID
*)rtwdemo_async_DWork.SFunction_PWORK.SemID,NO_WAIT) !=
ERROR) {
logMsg("Rate for Task TaskO() too fast.\n",0,0,0,0,0,0);
#if STOPONOVERRUN
logMsg("Aborting real-time simulation.\n",0,0,0,0,0,0);
semGive (stopSem);
return(ERROR) ;
#endif
} else {
semTake (* (SEM_ID
*)rtwdemo_async_DWork.SFunction_PWORK.SemID,
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WAIT_FOREVER);
}
/* Use the upstream clock tick counter for this Task. */
rtwdemo_async_M->Timing.clockTick2 =

rtwdemo_async_M->Timing.clockTick3;

/* Call the system: <Root>/Algorithm */

/* Output and update for function-call system: '<Root>/Algorithm' */

uint32_T rt_currentTime = ((uint32_T)rtwdemo_async_M->Timing.clockTick2);
uint32_T rt_elapseTime = rt_currentTime -
rtwdemo_async_DWork.Algorithm_PREV_T;

rtwdemo_async_DWork.Algorithm_PREV_T = rt_currentTime;

{
int32_T i;
/* DiscretelIntegrator: '<S1>/Integrator' */
rtwdemo_async_B.Integrator = rtwdemo_async_DWork.Integrator_DSTATE;
for(i = 0; i < 60; i++) {
/* Sum: '<S1>/Sum' */
rtwdemo_async_B.Sum[i] = rtwdemo_async_B.ProtectedRT1[i] + 1.25;
}
}

/* Sum: '<S81>/Sumtl' */
rtwdemo_async_B.Sum1 = rtwdemo_async_B.Sum[0];

{
int_T i1;

const real_T *u0 = &rtwdemo_async_B.Sum;[1];

for (i1=0; i1 < 59; it1++) {

rtwdemo_async_B.Sum1 += u0[il1];
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]
{
int32_T i;
if (rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx) {
for(i = 0; i < 60; i++) {
rtwdemo_async_DWork.ProtectedRT2_Buffer0[i] =
rtwdemo_async_B.Sum[i];
}
rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)O0U;
} else {
for(i = 0; i < 60; i++) {
rtwdemo_async_DWork.ProtectedRT2_Buffer1[i] =
rtwdemo_async_B.Sum[i];
}
rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)1U;
}
}

/* Update for DiscretelIntegrator: '<S1>/Integrator' */

rtwdemo_async_DWork.Integrator_DSTATE = (real_T)rt_elapseTime *
1.6666666666666666E-002 * rtwdemo_async_B.Sum1 +
rtwdemo_async_DWork.Integrator_DSTATE;

The semaphore is granted by the function isr_num2_vec193, which is called
from interrupt level:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_num2_vec193(void)

{
/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */
rtwdemo_async_M->Timing.clockTick3 = tickGet();

/* Call the system: <S4>/Subsystem */

/* Output and update for function-call system:
'<84>/Subsystem' */
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int32_T i;
for(i = 0; i < 60; i++) {
if (rtwdemo_async_DWork.ProtectedRT1_ActiveBufIdx) {
rtwdemo_async_B.ProtectedRT1[i] =
rtwdemo_async_DWork.ProtectedRT1_Buffer1[i];
} else {
rtwdemo_async_B.ProtectedRT1[i] =

rtwdemo_async_DWork.ProtectedRT1_Buffer0[i];

/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */
/* Release semaphore for system task: Task0 */
semGive (* (SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID);

The ISR maintains a timer that stores the tick count at the time of interrupt.
This timer 1s updated before releasing the semaphore that activates Task0.

As this example shows, the Task Sync block generates only a small amount of
interrupt-level code.

Task Termination Code. The Task Sync block also generates the following
termination code.

/* Model terminate function */

void rtwdemo_async_terminate(void)

{

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_numi_vec192 */
sysIntDisable(1);

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
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/* Disable interrupt for ISR system: isr_num2_vec193 */

sysIntDisable(2);

/* Terminate for function-call system: '<S4>/Subsystem' */
/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */

/* Destroy task: Task0 */
taskDelete(rtwdemo_async_DWork.SFunction_IWORK.TaskID);

}

Rate Transitions and Asynchronous Blocks

® “Introduction” on page 5-52
¢ “Handling Rate Transitions for Asynchronous Tasks” on page 5-54

¢ “Handling Multiple Asynchronous Interrupts” on page 5-55

Introduction

Because an asynchronous function call subsystem can preempt or be
preempted by other model code, an inconsistency arises when more than

one signal element is connected to an asynchronous block. The issue is that
signals passed to and from the function call subsystem can be in the process of
being written to or read from when the preemption occurs. Thus, some old
and some new data is used. This situation can also occur with scalar signals
in some cases. For example, if a signal is a double (8 bytes), the read or write
operation might require two machine instructions.

The Simulink Rate Transition block is designed to deal with preemption
problems that occur in data transfer between blocks running at different
rates. These issues are discussed in Chapter 5, “Scheduling Considerations”.

You can handle rate transition issues automatically by selecting the
Automatically handle data transfers between tasks option on the Solver
pane of the Configuration Parameters dialog box. This saves you from having
to manually insert Rate Transition blocks to avoid invalid rate transitions,
including invalid asynchronous-to-periodic and asynchronous-to-asynchronous
rate transitions, in multirate models. For asynchronous tasks, the Simulink
engine configures the inserted blocks to ensure data integrity but not
determinism during data transfers.
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For asynchronous rate transitions, the Rate Transition block guarantees
data integrity, but cannot guarantee determinism. Therefore, when you

insert Rate Transition blocks explicitly, you must clear the Ensure data
determinism check box in the Block Parameters dialog box.

When you insert a Rate Transition block between two blocks to ensure data
integrity and priorities are assigned to the tasks associated with the blocks,
the Real-Time Workshop software assumes that the higher priority task can
preempt the lower priority task and the lower priority task cannot preempt
the higher priority task. If the priority associated with task for either block
is not assigned or the priorities of the tasks for both blocks are the same,
the Real-Time Workshop software assumes that either task can preempt
the other task.

Priorities of periodic tasks are assigned by the Simulink engine, in accordance
with the options specified in the Solver options section of the Solver pane
of the Configuration Parameters dialog box. When the Periodic sample
time constraint option field of Solver options is set to Unconstrained, the
model base rate priority is set to 40. Priorities for subrates then increment or
decrement by 1 from the base rate priority, depending on the setting of the
Higher priority value indicates higher task priority option.

You can assign priorities manually by using the Periodic sample time
properties field. The Simulink engine does not assign a priority to
asynchronous blocks. For example, the priority of a function call subsystem
that connects back to an Async Interrupt block is assigned by the Async
Interrupt block.

The Simulink task priority field of the Async Interrupt block specifies
a priority level (required) for every interrupt number entered in the VME
interrupt number(s) field. The priority array sets the priorities of the
subsystems connected to each interrupt.

For the Task Sync block, if the Wind River Systems VxWorks RTOS is the
target, the Higher priority value indicates higher task priority option
should be deselected. The Simulink task priority field specifies the block
priority relative to connected blocks (in addition to assigning a VxWorks
priority to the generated task code).
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The VxWorks library provides two types of rate transition blocks as a
convenience. These are simply preconfigured instances of the built-in
Simulink Rate Transition block:

® Protected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers on and Ensure
deterministic data transfer off.

® Unprotected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers option off.

Handling Rate Transitions for Asynchronous Tasks

For rate transitions that involve asynchronous tasks, you can ensure data
integrity. However, you cannot ensure determinism. You have the option of
using the Rate Transition block or target-specific rate transition blocks.

Consider the following model, which includes a Rate Transition block.

hd
- ! .
function (| function)
In1 ut1 1 i outl
M [
Funection-Call Rate Transition Function-Call
Subsystemn Tash1 Subsystemn1 Tas

You can use the Rate Transition block in either of the following modes:

® Ensure data integrity, no determinism

e Unprotected

Alternatively, you can use target-specific rate transition blocks. The following
blocks are available for the VxWorks RTOS:

® Protected Rate Transition block (reader)

® Protected Rate Transition block (writer)
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e Unprotected Rate Transition block

Handling Multiple Asynchronous Interrupts

Consider the following model, in which two functions trigger the same
subsystem.

Trigger A

[ © | A

Trigger B funetion()
Ini Curt1 |-

Function-Call
Subsystem

The two tasks must have equal priorities. When priorities are the same, the
outcome depends on whether they are firing periodically or asynchronously,
and also on a diagnostic setting. The following table and notes describe
these outcomes:

Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

Async
Async Async Priority Periodic Periodic
Priority = 1 | Priority = 2 | Unspecified | Priority = 1 | Priority = 2

Async
Priority = 1

Supported (1)

Async Supported (1)

Priority = 2

Async Supported (2)
Priority

Unspecified
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Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

(Continued)
Async
Async Async Priority Periodic Periodic
Priority = 1 | Priority = 2 | Unspecified | Priority = 1 | Priority = 2
Periodic Supported

Priority = 1

Periodic Supported

Priority = 2

1 Control these outcomes using the Tasks with equal priority option in
the Diagnostics pane of the Configuration Parameters dialog box; set this
diagnostic to none if tasks of equal priority cannot preempt each other
in the target system.

2 For this case, the following warning message is issued unconditionally:

The function call subsystem <name> has multiple asynchronous
triggers that do not specify priority. Data integrity will
not be maintained if these triggers can preempt one another.

Empty cells in the above table represent multiple triggers with differing
priorities, which are unsupported.

The Real-Time Workshop product provides absolute time management for a
function call subsystem connected to multiple interrupts in the case where
timer settings for TriggerA and TriggerB (time source, resolution) are the
same.

Assume that all the following conditions are true for the model shown above:

e A function call subsystem is triggered by two asynchronous triggers
(TriggerA and TriggerB) having identical priority settings.

¢ Each trigger sets the source of time and timer attributes by calling the
functions ssSetTimeSource and ssSetAsyncTimerAttributes.
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® The triggered subsystem contains a block that needs elapsed or absolute
time (for example, a Discrete Time Integrator).

The asynchronous function call subsystem has one global variable,
clockTick# (where # is the task ID associated with the subsystem). This
variable stores absolute time for the asynchronous task. There are two ways
timing can be handled:

o If the time source is set to SS_TIMESOURCE_BASERATE, the Real-Time
Workshop code generator generates timer code in the function call
subsystem, updating the clock tick variable from the base rate clock tick.
Data integrity is ensured if the same priority is assigned to TriggerA and
TriggerB.

¢ [fthe time source is SS_TIMESOURCE_SELF, generated code for both TriggerA
and TriggerB updates the same clock tick variable from the hardware clock.

The word size of the clock tick variable can be set directly or be established
according to the Application lifespan (days) setting and the timer
resolution set by the TriggerA and TriggerB S-functions (which must be
the same). See “Using Timers in Asynchronous Tasks” on page 5-57 and
“Controlling Memory Allocation for Time Counters” on page 25-51 for more
information.

Using Timers in Asynchronous Tasks

An ISR can set a source for absolute time. This is done with the function
ssSetTimeSource, which has the following three options:

® SS TIMESOURCE_SELF: Each generated ISR maintains its own absolute time
counter, which is distinct from any periodic base rate or subrate counters
in the system. The counter value and the timer resolution value (specified
in the Timer resolution (seconds) parameter of the Async Interrupt
block) are used by downstream blocks to determine absolute time values
required by block computations.

® SS TIMESOURCE_CALLER: The ISR reads time from a counter maintained by
its caller. Time resolution is thus the same as its caller’s resolution.
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® SS TIMESOURCE_BASERATE: The ISR can read absolute time from the
model’s periodic base rate. Time resolution is thus the same as its base
rate resolution.

Note The function ssSetTimeSource cannot be called before
ssSetOutputPortWidth is called. If this occurs, the program will come to a
halt and generate an error message.

By default, the counter is implemented as a 32-bit unsigned integer member
of the Timing substructure of the real-time model structure. For any target
that supports the rtModel data structure, when the time data type is not set
by using ssSetAsyncTimeDataType, the counter word size is determined by
the Application lifespan (days) model parameter. As an example (from
ERT target code),

/* Real-time Model Data Structure */
struct _RT_MODEL_elapseTime_exp_Tag {
const char *errorStatus;

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickl;
uint32_T clockTick2;
} Timing;

b

The example omits unused fields in the Timing data structure (a feature of
ERT target code not found in GRT). For any target that supports the rtModel
data structure, the counter word size is determined by the Application
lifespan (days) model parameter.

By default, the library blocks for the Wind River Systems VxWorks RTOS
set the timer source to SS_TIMESOURCE_SELF and update their counters by
using the system call tickGet. tickGet returns a timer value maintained by
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the VxWorks kernel. The maximum word size for the timer is UINT32. The
following VxWorks example for the shows a generated call to tickGet.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_num2_vec193(void)

{

/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */
rtM->Timing.clockTick2 = tickGet();

The tickGet call is supplied only as an example. It can (and in many
instances should) be replaced by a timing source that has better resolution. If
you are targeting the VxWorks RTOS, you can obtain better timer resolution
by replacing the tickGet call and accessing a hardware timer by using your
BSP instead.

If you are implementing a custom asynchronous block for an RTOS other
than the VxWorks RTOS, you should either generate an equivalent call to
the target RTOS, or generate code to read the appropriate timer register on
the target hardware.

The default Timer resolution (seconds) parameter of your Async Interrupt
block implementation should be changed to match the resolution of your
target’s timing source.

The counter is updated at interrupt level. Its value represents the tick value
of the timing source at the most recent execution of the ISR. The rate of this
timing source is unrelated to sample rates in the model. In fact, typically it

is faster than the model’s base rate. Select the timer source and set its rate

and resolution based on the expected rate of interrupts to be serviced by the
Async Interrupt block.

For an example of timer code generation, see “Async Interrupt Block
Implementation” on page 5-61.
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Creating a Customized Asynchronous Library

¢ “Introduction” on page 5-60

¢ “Async Interrupt Block Implementation” on page 5-61
e “Task Sync Block Implementation” on page 5-65

e “agynclib.tlc Support Library” on page 5-67

Introduction

This section describes how to implement asynchronous blocks for use with
your target RTOS, using the Async Interrupt and Task Sync blocks as a
starting point. (Rate Transition blocks are target-independent, so you do not
need to develop customized rate transition blocks.)

You can customize the asynchronous library blocks by modifying the block
implementation. These files are

¢ The block’s underlying S-function MEX-file
¢ The TLC files that control code generation of the block

In addition, you need to modify the block masks to remove references specific
to the Wind River Systems VxWorks RTOS and to incorporate parameters
required by your target RTOS.

Custom block implementation is an advanced topic, requiring familiarity with
the Simulink MEX S-function format and API, and with the Target Language
Compiler (TLC). These topics are covered in the following documents:

¢ The “Overview of S-Functions” in the Simulink Writing S-Functions
documentation describes MEX S-functions and the S-function API in
general.

® The Target Language Compiler documentation and Chapter 31,
“Integrating External Code Using S-Functions” describe how to create a
TLC block implementation for use in code generation.

The following sections discuss the C/C++ and TLC implementations of the
asynchronous library blocks, including required SimStruct macros and
functions in the TLC asynchronous support library (asynclib.tlc).
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Async Interrupt Block Implementation

The source files for the Async Interrupt block are located in
matlabroot/rtw/c/tornado/devices:

e vxinterrupti.c: C MEX-file source code, for use in configuration and
simulation
e vxinterrupti.tlc: TLC implementation, for use in code generation

® asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tle Support Library” on page 5-67.

C MEX Block Implementation. Most of the code in vxinterrupti.c
performs ordinary functions that are not related to asynchronous support (for
example, obtaining and validating parameters from the block mask, marking
parameters nontunable, and passing parameter data to the model . rtw file).

The mdlInitializeSizes function uses special SimStruct macros and
SS_OPTIONS settings that are required for asynchronous blocks, as described
below.

Note that the following macros cannot be called before ssSetOutputPortWidth
is called:

® ssSetTimeSource

® ssSetAsyncTimerAttributes

® ssSetAsyncTimerResolutionEl

® ssSetAsyncTimerDataType

® ssSetAsyncTimerDataTypeEl

® ssSetAsyncTaskPriorities

® ssSetAsyncTaskPrioritiesEl

If any one of the above macros is called before ssSetOutputPortWidth, the
following error message will appear:

SL_SfcnMustSpecifyPortWidthBfCallSomeMacro {
S-function '%s' in 'S%<BLOCKFULLPATH>'
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must set output port %d width using
ssSetOutputPortWidth before calling macro %s

}

ssSetAsyncTimerAttributes
ssSetAsyncTimerAttributes declares that the block requires a timer,
and sets the resolution of the timer as specified in the Timer resolution

(seconds) parameter.

The function prototype is

ssSetAsyncTimerAttributes(SimStruct *S, double res)
where

® S is a Simstruct pointer.

® res is the Timer resolution (seconds) parameter value.

The following code excerpt shows the call to ssSetAsyncTimerAttributes.

/* Setup Async Timer attributes */
ssSetAsyncTimerAttributes(S,mxGetPr(TICK_RES)[0]);

ssSetAsyncTaskPriorities

ssSetAsyncTaskPriorities sets the Simulink task priority for blocks
executing at each interrupt level, as specified in the block’s Simulink task
priority field.

The function prototype is

ssSetAsyncTaskPriorities(SimStruct *S, int numISRs,
int *priorityArray)

where

® Sis a SimStruct pointer.
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® numISRs is the number of interrupts specified in the VME interrupt
number(s) parameter.

® priorityarray is an integer array containing the interrupt numbers
specified in the VME interrupt number(s) parameter.

The following code excerpt shows the call to ssSetAsyncTaskPriorities:

/* Setup Async Task Priorities */
priorityArray = malloc(numISRs*sizeof (int_T));
for (i=0; i<numISRs; i++) {
priorityArray[i] = (int_T) (mxGetPr(ISR_PRIORITIES)[i]);
}
ssSetAsyncTaskPriorities (S, numISRs, priorityArray);
free(priorityArray);
priorityArray = NULL;

SS_OPTION Settings

The code excerpt below shows the SS_OPTION settings for vxinterrupti.c.
SS_OPTION_ASYNCHRONOUS_ INTERRUPT should be used when a function
call subsystem is attached to an interrupt. For more information, see

the documentation for SS_OPTION and SS_OPTION_ASYNCHRONOUS in
matlabroot/simulink/include/simstruc.h

ssSetOptions( S, (SS_OPTION_EXCEPTION FREE_CODE |

SS_OPTION_DISALLOW_CONSTANT SAMPLE_TIME |
SS_OPTION_ASYNCHRONOUS_INTERRUPT |

TLC Implementation. This section discusses each function of
vxinterrupti.tlc, with an emphasis on target-specific features that you will
need to change to generate code for your target RTOS.

Generating #include Directives

vxinterrupti.tlc begins with the statement

%include "vxlib.tlc"

5-63



5 Scheduling Considerations

5-64

vx1lib.tlc is a target-specific file that generates directives to include
VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.

BlockInstanceSetup Function

For each connected output of the Async Interrupt block, BlockInstanceSetup
defines a function name for the corresponding ISR in the generated code.
The functions names are of the form

isr_num_vec_offset

where num is the ISR number defined in the VME interrupt number(s)
block parameter, and offset is an interrupt table offset defined in the VME
interrupt vector offset(s) block parameter.

In a custom implementation, there is no requirement to use this naming
convention.

The function names are cached for use by the Outputs function, which
generates the actual ISR code.

Outputs Function

Outputs iterates over all connected outputs of the Async Interrupt block. An
ISR is generated for each such output.

The ISR code is cached in the "Functions" section of the generated code.
Before generating the ISR, Outputs does the following:

® Generates a call to the downstream block (cached in a temporary buffer).

® Determines whether the ISR should be locked or not (as specified in the
Preemption Flag(s) block parameter).

® Determines whether the block connected to the Async Interrupt block is a
Task Sync block. (This information is obtained by using the asynclib calls
LibGetFcnCallBlock and LibGetBlockAttrribute.) If so,
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= The preemption flag for the ISR must be set to 1. An error results
otherwise.

= VxWorks calls to save and restore floating-point context are generated,
unless the user has configured the model for integer-only code
generation.

When generating the ISR code, Outputs calls the asynclib function
LibNeedAsyncCounter to determine whether a timer is required by

the connected subsystem. If so, and if the time source is set to be
SS_TIMESOURCE_SELF by ssSetTimeSource, LibSetAsyncCounter is called
to generate a VxWorks tickGet function call and update the appropriate
counter. In your implementation, you should generate either an equivalent
call to the target RTOS, or generate code to read the appropriate timer
register on the target hardware.

If you are targeting the VxWorks RTOS, you can obtain better timer resolution
by replacing the tickGet call and accessing a hardware timer by using your
BSP instead. tickGet supports only a 1/60 second resolution.

Start Function

The Start function generates the required VxWorks calls (int_connect and
sysInt_Enable) to connect and enable each ISR. You should replace this with
appropriate calls to your target RTOS.

Terminate Function

The Terminate function generates the call sysIntDisable to disable each
ISR. You should replace this with appropriate calls to your target RTOS.

Task Sync Block Implementation

The source files for the Task Sync block are located in
matlabroot/rtw/c/tornado/devices. They are

e vxtaski1.c: MEX-file source code, for use in configuration and simulation.

e vxtaskil.tlc: TLC implementation, for use in code generation.
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® asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tlc Support Library” on page 5-67.

C MEX Block Implementation. Like the Async Interrupt block, the Task
Sync block sets up a timer, in this case with a fixed resolution. The priority
of the task associated with the block is obtained from the Simulink task
priority parameter. The SS_OPTION settings are the same as those used for
the Async Interrupt block.

ssSetAsyncTimerAttributes(S, 0.01);

priority = (int_T) (*(mxGetPr(PRIORITY)));
ssSetAsyncTaskPriorities(S,1,&priority);

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_ASYNCHRONOUS |
SS_OPTION_DISALLOW_CONSTANT SAMPLE_TIME |

}

TLC Implementation.

Generating #include Directives

vxtask1.tlc begins with the statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include
VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.

BlockInstanceSetup Function

The BlockInstanceSetup function derives the task name, block name, and

other identifier strings used later in code generation. It also checks for
and warns about unconnected block conditions, and generates a storage
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declaration for a semaphore (stopSem) that is used in case of interrupt
overflow conditions.

Start Function

The Start function generates the required VxWorks calls to define storage
for the semaphore that is used in management of the task spawned by the
Task Sync block. Depending on the code format of the target, either a static
storage declaration or a dynamic memory allocation call is generated. This
function also creates a semaphore (semBCreate) and spawns a VxWorks task
(taskSpawn). You should replace these with appropriate calls to your target
RTOS.

Outputs Function

The Outputs function generates a VxWorks task that waits for a semaphore.
When it obtains the semaphore, it updates the block’s tick timer and calls
the downstream subsystem code, as described in “Spawning a Wind River
Systems VxWorks Task” on page 5-45. Outputs also generates code (called
from interrupt level) that grants the semaphore.

Terminate Function

The Terminate function generates the VxWorks call taskDelete to end
execution of the task spawned by the block. You should replace this with
appropriate calls to your target RTOS.

Note also that if the target RTOS has dynamically allocated any memory
associated with the task , the Terminate function should deallocate the
memory.

asynclib.tlc Support Library

asynclib.tlc is a library of TLC functions that support the implementation
of asynchronous blocks. Some functions are specifically designed for use in
asynchronous blocks. For example, LibSetAsyncCounter generates a call to
update a timer for an asynchronous block. Other functions are utilities that
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return information required by asynchronous blocks (for example, information
about connected function call subsystems).

The following table summarizes the public calls in the library. For details,
see the library source code and the vxinterrupti.tlc and vxtaski.tlc
files, which call the library functions.

Summary of asynclib.tlc Library Functions

Function Description
LibGetBlockAttrribute Returns a field value from a block record.
LibGetFcnCallBlock Given an S-Function block and call

index, returns the block record for the
downstream function call subsystem
block.

LibBlockExecuteFcnCall

For use by inlined S-functions with
function call outputs. Generates code

to execute a function call subsystem.
LibBlockExecuteFcnCall calls the
lower-level function LibExecuteFcnCall,
but has a simplified argument list.

See the Target Language Compiler
documentation for more information on
LibExecuteFcnCall.

LibGetCallerClockTickCounter

Provides access to an upstream
asynchronous task’s time counter.

LibGetCallerClockTickCounterHighWord

Provides access to the high word of
an upstream asynchronous task’s time
counter.

LibManageAsyncCounter

Determines whether an asynchronous
task needs a counter and manages its
own timer.
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Summary of asynclib.tlc Library Functions (Continued)

Function

Description

LibNeedAsyncCounter

If the calling block requires an
asynchronous counter, returns TLC_TRUE,
otherwise returns TLC_FALSE.

LibSetAsyncClockTicks

Returns code that sets clockTick
counters that are to be maintained by the
asynchronous task.

LibSetAsyncCounter

Generates code to set the tick value of
the block’s asynchronous counter.

LibSetAsyncCounterHighWord

Generates code to set the tick value of the
high word of the block’s asynchronous
counter

Asynchronous Support Limitations

The Simulink product does not simulate asynchronous task behavior.
Although you can specify a task priority for an asynchronous task represented
in a model with the Task Sync block, the priority setting is for code generation
purposes only and is not honored during simulation.
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Using Timers

In this section...

“Absolute and Elapsed Time Computation” on page 5-70
“APIs for Accessing Timers” on page 5-72

“Elapsed Timer Code Generation Example” on page 5-77
“Limitations on the Use of Absolute Time” on page 5-80

Absolute and Elapsed Time Computation

“Introduction” on page 5-70

“Timers for Periodic and Asynchronous Tasks” on page 5-71
“Allocation of Timers” on page 5-71

“Integer Timers in Generated Code” on page 5-72

“Elapsed Time Counters in Triggered Subsystems” on page 5-72

Introduction

Certain blocks require the value of either absolute time (that is, the time
from the start of program execution to the present time) or elapsed time (for
example, the time elapsed between two trigger events). All targets that
support the real-time model (rtModel) data structure provide efficient time
computation services to blocks that request absolute or elapsed time. Absolute

a

nd elapsed timer features include

Timers are implemented as unsigned integers in generated code.

In multirate models, at most one timer is allocated per rate, on an
as-needed basis. If no blocks executing at a given rate require a timer, no
timer is allocated to that rate. This minimizes memory allocated for timers
and significantly reduces overhead involved in maintaining timers.

Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.
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® The Real-Time Workshop product provides S-function and TLC APIs that
let your S-functions access timers, in both simulation and code generation.

¢ For ERT and ERT-derived targets, the word size of the timers is determined
by a user-specified maximum counter value. Correct specification of this
value ensures that timers will not overflow. See the description of the
parameter “Controlling Memory Allocation for Time Counters” on page
25-51. See also the Real-Time Workshop Embedded Coder documentation
for information on restrictions on its use.

See “Limitations on the Use of Absolute Time” on page 5-80 and “Blocks that
Depend on Absolute Time” on page 5-81 for more information about absolute
time and the restrictions that it imposes.

Timers for Periodic and Asynchronous Tasks

This chapter discusses timing services provided for blocks executing within
periodic tasks (that is, tasks running at the model’s base rate or subrates).

The Real-Time Workshop product also provides timer support for blocks
whose execution is asynchronous with respect to the periodic timing source of
the model. See the following sections of the Asynchronous Support chapter:

e “Using Timers in Asynchronous Tasks” on page 5-57

¢ “Creating a Customized Asynchronous Library” on page 5-60

Allocation of Timers

If you create or maintain an S-Function block that requires absolute or
elapsed time data, it must register the requirement (see “APIs for Accessing
Timers” on page 5-72). In multirate models, timers are allocated on a per-rate
basis. For example, consider a model structured as follows:

There are three rates, A, B, and C, in the model.

No blocks running at rate B require absolute or elapsed time.

Two blocks running at rate C register a requirement for absolute time.

One block running at rate A registers a requirement for absolute time.
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In this case, two timers are generated, running at rates A and C respectively.
The timing engine updates the timers as the tasks associated with rates A
and C execute. Blocks executing at rates A and C obtain time data from the
timers associated with rates A and C.

Integer Timers in Generated Code

In the generated code, timers for absolute and elapsed time are implemented
as unsigned integers. The default size is 64 bits. This is the amount of
memory allocated for a timer if you specify a value of inf for the Application
lifespan (days) parameter. For an application with a sample rate of 1000
MHz, a 64-bit counter will not overflow for more than 500 years. See “Using
Timers in Asynchronous Tasks” on page 5-57 and “Controlling Memory
Allocation for Time Counters” on page 25-51 for more information.

Elapsed Time Counters in Triggered Subsystems

Some blocks, such as the Discrete-Time Integrator block, perform
computations requiring the elapsed time (delta T) since the previous block
execution. Blocks requiring elapsed time data must register the requirement
(see “APIs for Accessing Timers” on page 5-72). A triggered subsystem then
allocates and maintains a single elapsed time counter if required. This timer
functions at the subsystem level, not at the individual block level. The timer
1s generated if the triggered subsystem (or any unconditionally executed
subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note If you are using simplified initialization mode, elapsed time is always
reset on first execution after becoming enabled, whether or not the subsystem
is configured to reset on enable. For more information, see “Underspecified
initialization detection” in the Simulink documentation.

APIs for Accessing Timers

¢ “Introduction” on page 5-73
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“C API for S-Functions” on page 5-73
“TLC API for Code Generation” on page 5-76

Introduction

This section describes APIs that let your S-functions take advantage of the
efficiencies offered by the absolute and elapsed timers. SimStruct macros are
provided for use in simulation, and TLC functions are provided for inlined
code generation. Note that

To generate and use the new timers as described above, your
S-functions must register the need to use an absolute or elapsed
timer by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

Existing S-functions that read absolute time but do not register by using
these macros will continue to operate correctly, but will generate old-style,
less efficient code.

C API for S-Functions

The SimStruct macros described in this section provide access to absolute and
elapsed timers for S-functions during simulation.

In the functions below, the SimStruct *S argument is a pointer to the
simstruct of the calling S-function.

void ssSetNeedAbsoluteTime(SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires absolute time data, and
allocates an absolute time counter for the rate at which the S-function
executes (if such a counter has not already been allocated).

int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function
has registered that it requires absolute time.

double ssGetTaskTime(SimStruct *S, tid): read absolute time

for a given task with task identifier tid. ssGetTaskTime operates
transparently, regardless of whether or not you use the new timer features.
ssGetTaskTime is documented in the SimStruct Functions chapter of the
Simulink Writing S-Functions documentation.
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void ssSetNeedElapseTime (SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires elapsed time data, and
allocates an elapsed time counter for the triggered subsystem in which the
S-function executes (if such a counter has not already been allocated). See
also “Elapsed Time Counters in Triggered Subsystems” on page 5-72.

int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function
has registered that it requires elapsed time.

void ssGetElapseTime(SimStruct *S, (double *)elapseTime):
returns, to the location pointed to by elapseTime, the value (as a double)
of the elapsed time counter associated with the S-function.

void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the
S-function to the location pointed to by dtype. This function is intended for
use with the ssGetElapseTimeCounter function (see below).

void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution.
This function is intended for use with the ssGetElapseTimeCounter
function (see below).

void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime):
This function is provided for the use of blocks that require the elapsed time
values for fixed-point computations. ssGetElapseTimeCounter returns,

to the location pointed to by elapseTime, the integer value of the elapsed
time counter associated with the S-function. If the counter size is 64 bits,
the value is returned as an array of two 32-bit words, with the low-order
word stored at the lower address.

To determine how to access the returned counter value, obtain the data
type of the counter by calling ssGetElapseTimeCounterDtype, as in the
following code:

int *y dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
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ssGetElapseTimeCounter (S, dataPtr);

}
break;
case SS_UINT32:
{
uint32_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT16:
{
uint16_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINTS:
{
uint8 T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_DOUBLE:
{
real T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
default:
ssSetErrorStatus(S, "Invalid data type for elaspe time
counter");
break;

}

If you want to use the actual elapsed time, issue a call to the
ssGetElapseTime function to access the elapsed time directly. You do not
need to get the counter value and then calculate the elapsed time.

double *y elapseTime;
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ssGetElapseTime (S, elapseTime)

TLC API for Code Generation

The following TLC functions support elapsed time counters in generated code
when you inline S-functions by writing TLC scripts for them.

e |ibGetTaskTimeFromTID(block): Generates code to read the absolute
time for the task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions
in the TLC Function Library Reference pages of the Target Language
Compiler documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base
rate (tid 0) timer. If LibGetT is called for a block executing at a subrate,
the wrong timer is read, causing serious errors.

e LibGetElapseTime (system): Generates code to read the elapsed time
counter for system. (system is the parent system of the calling block.) See
“Elapsed Timer Code Generation Example” on page 5-77 for an example
of code generated by this function.

® LibGetElapseTimeCounter (system): Generates code to read the integer
value of the elapsed time counter for system. (system is the parent system
of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeld and LibGetElapseTimeResolution.
(See the discussion of ssGetElapseTimeCounter above.)

® LibGetElapseTimeCounterDtypeld(system): Generates code that returns
the data type of the elapsed time counter for system. (system is the parent
system of the calling block.)

® LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent
system of the calling block.)
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Elapsed Timer Code Generation Example

This section shows a simple model illustrating how an elapsed time counter is
generated and used by a Discrete-Time Integrator block within a triggered
subsystem. The following block diagrams show the model elapseTime_exp,
which contains subsystem Amplifier, which includes a Discrete-Time
Integrator block.

+H +HH+

Vo
+H
Fulze
zenearator

o n Iy
14 e 1)
. INPUT OUTPUT

Constant

Amplifier

elapseTime_exp Model

I o
|.4

Trigger

K Ts=
o o

=1
[riscrete-Time
Integrater

Amplifier Subsystem

A 32-bit timer for the base rate (the only rate in this model) is defined within
the rtModel structure, as follows, in model . h.

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
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time T stepSize;
uint32_T clockTickO;
uint32_T clockTickHO;
time_T stepSizeO;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
void *timingData;
real T *varNextHitTimesList;
SimTimeStep simTimeStep;
boolean T stopRequestedFlag;
time_T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int T *sampleHits;
int T *perTaskSampleHits;
time T *t;
time T sampleTimesArray[1];
time T offsetTimesArray[1];
int T sampleTimeTaskIDArray[1];
int T sampleHitArray[1];
int_T perTaskSampleHitsArray[1];
time T tArray[1];

} Timing;

Had the target been ERT instead of GRT, the Timing structure would have
been pruned to contain only the data required by the model, as follows:

/* Real-time Model Data Structure */ (for ERT!)
struct _RT_MODEL_elapseTime_exp_Tag {

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickO;
} Timing;
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b

Storage for the previous-time value of the Amplifier subsystem
(Amplifier_ PREV_T) is allocated in the D_Work (states) structure in model.h.

typedef struct D_Work_elapseTime_exp_tag {
real T DiscreteTimeIntegrator DSTATE; /* '<S1>/Discrete-Time
Integrator' */

int32_T clockTickCounter; /* '<Root>/Pulse Generator' */

uint32_T Amplifier_ PREV_T; /* '<Root>/Amplifier' */
} D_Work_elapseTime_exp;

These structures are declared in model.c:

/* Block states (auto storage) */
D Work_elapseTime_exp elapseTime_exp_DWork;

/* Real-time model */
rtModel_elapseTime_exp elapseTime_exp_M_;
rtModel_elapseTime_exp *elapseTime_exp_M = &elapseTime_exp_M_;

The elapsed time computation is performed as follows within the model step
function:

/* Output and update for trigger system: '<Root>/Amplifier' */
uint32_T rt_currentTime =
((uint32_T)elapseTime_exp_M->Timing.clockTickO);
uint32_T rt_elapseTime = rt_currentTime -
elapseTime_exp_DWork.Amplifier_ PREV_T;
elapseTime_exp_DWork.Amplifier_PREV_T = rt_currentTime;

As shown above, the elapsed time is maintained as a state of the triggered
subsystem. The Discrete-Time Integrator block finally performs its output
and update computations using the elapsed time.

/* DiscreteIntegrator: '<S1>/Discrete-Time Integrator' */
OUTPUT = elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE;

/* Update for DiscreteIntegrator: '<S1>/Discrete-Time Integrator'*/
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elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE += 0.3 *
(real_T)rt_elapseTime * 1.5 ;

Because the triggered subsystem maintains the elapsed time, the TLC
implementation of the Discrete-Time Integrator block needs only a single call
to LibGetElapseTime to access the elapsed time value.

Limitations on the Use of Absolute Time

* “About Absolute Time Limitations” on page 5-80

* “Logging Absolute Time” on page 5-80

® “Absolute Time in Stateflow Charts” on page 5-81

¢ “Blocks that Depend on Absolute Time” on page 5-81

About Absolute Time Limitations

Absolute time is the time that has elapsed from the beginning of program
execution to the present time, as distinct from elapsed time, the interval
between two events. See “Absolute and Elapsed Time Computation” on page
5-70 for more information.

When you design an application that is intended to run indefinitely, you must
take care when logging time values, or using charts or blocks that depend

on absolute time. If the value of time reaches the largest value that can

be represented by the data type used by the timer to store time, the timer
overflows and the logged time or block output is no longer correct.

If your target uses rtModel, you can avoid timer overflow by setting an
appropriate Application life span option. See “Integer Timers in Generated
Code” on page 5-72 for more information.

Logging Absolute Time

If you log time values by enabling Configuration Parameters > Data
Import/Export > Save to workspace > Time your model uses absolute
time.
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Absolute Time in Stateflow Charts

Every Stateflow chart that uses time is dependent on absolute time. The
only way to eliminate the dependency is to change the Stateflow chart to
not use time.

Blocks that Depend on Absolute Time
The following Simulink blocks depend on absolute time:

Backlash

Chirp Signal

Clock

Derivative

Digital Clock

Discrete-Time Integrator (only when used in triggered subsystems)
From File

From Workspace

Pulse Generator

Ramp

Rate Limiter

Repeating Sequence

Signal Generator

Sine Wave (only when the Sine type parameter is set to Time-based)
Step

To File

To Workspace (only when logging to StructureWithTime format)
Transport Delay

Variable Time Delay

Variable Transport Delay
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In addition to the Simulink blocks above, blocks in other blocksets may depend
on absolute time. See the documentation for the blocksets that you use.
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Configuring Scheduling

In this section...

“Configuring Start and Stop Times” on page 5-83
“Configuring the Solver Type” on page 5-84
“Configuring the Tasking Mode” on page 5-84

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configuring Start and Stop Times

The stop time must be greater than or equal to the start time. If the stop time
is zero, or if the total simulation time (Stop minus Start) is less than zero,
the generated program runs for one step. If the stop time is set to inf, the
generated program runs indefinitely.

When using the GRT or Wind River Systems Tornado targets, you can
override the stop time when running a generated program from the Microsoft
Windows command prompt or UNIX? command line. To override the stop
time that was set during code generation, use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.
See Getting Started in the Real-Time Workshop documentation for an
example of the use of this option.

Certain blocks have a dependency on absolute time. If you are designing a
program that is intended to run indefinitely (Stop time = inf), and your
generated code does not use the rtModel data structure (that is, it uses
simstructs instead), you must not use these blocks. See “Limitations on the
Use of Absolute Time” on page 5-80 for a list of blocks that can potentially
overflow timers.

3. UNIX® is a registered trademark of The Open Group in the United States and other
countries.
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If you know how long an application that depends on absolute time needs to
run, you can ensure that timers do not overflow and that they use optimal
word sizes by specifying the Application lifespan (days) parameter on the
Optimization pane. See “Controlling Memory Allocation for Time Counters”
on page 25-51 for details.

Configuring the Solver Type

For code generation, you must configure a model to use a fixed-step solver for
all targets except the S-function and RSim targets. You can configure the
S-function and RSim targets with a fixed-step or variable-step solver.

Configuring the Tasking Mode

The Real-Time Workshop product supports both single-tasking and
multitasking modes for periodic sample times. See Chapter 5, “Scheduling
Considerations” for details.
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* “Overview” on page 6-2

e “Sample Time Propagation” on page 6-4

® “Latches for Subsystem Blocks” on page 6-6
e “Block Execution Order” on page 6-7

e “Algebraic Loops” on page 6-9
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Overview

The Simulink engine propagates data from one block to the next along signal
lines. The data propagated consists of

® Data type
¢ Line widths

® Sample times

The first stage of code generation is compilation of the block diagram. This
stage i1s analogous to that of a C or C++ program. The compiler carries out
type checking and preprocessing. Similarly, the Simulink engine verifies that
input/output data types of block ports are consistent, line widths between
blocks are of the correct thickness, and the sample times of connecting blocks
are consistent.

You can verify what data types any given Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command
above.

The Simulink engine typically derives signal attributes from a source block.
For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.



Overview

=] 50urce Block Parameters: Inl
Inport

Frovide an input part for a subsystern or model.

Fuar Triggerad Subsysterns, Latch input by delaying outzide signal' produces the
walue of the subspstem input at the previous time step.

For Function-call Subsystems, 'Latch input by copying ingide signal' copies the |nport
black's output to a buffer before the contents of the subsystem are executed.

The ather parameters can be uzed to explicitly specify the input signal attributes.
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Buz object for validating input bus:
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In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the
Inport block through a simple block diagram.

double (2 (3 2 dauble (2 (3 .@
In

Out
23in

In this example, the Gain and Outport blocks inherit the attributes specified
for the Inport block.
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Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can
sometimes lead to unexpected and unintended sample time assignments.
Since a block may specify an inherited sample time, information available at
the outset is often insufficient to compile a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample
times to those blocks that have inherited sample times but that have not

yet been assigned a sample time. Thus, the engine continues to fill in the
blanks (the unknown sample times) until sample times have been assigned to
as many blocks as possible.

Blocks that still do not have a sample time are assigned a default sample
time according to the following rules:

1 If the current system has at least one rate in it, the block is assigned the
fastest rate.

2 If no rate exists and the model is configured for a variable-step solver,
the block is assigned a continuous sample time (but fixed in minor time
steps). The Real-Time Workshop product (with the exception of the rapid
simulation and S-function targets) does not currently support variable-step
solvers.

3 If no rate exists and the model is configured for a fixed-step solver, the
block is assigned a discrete sample time of (T, - T,)/50, where T, is the
simulation start time and T, is the simulation stop time. If T, is infinity,
the default sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are
set using the above rules), you should explicitly specify the sample times of all
your source blocks. Source blocks include root inport blocks and any blocks
without input ports. You do not have to set subsystem input port sample
times. You might want to do so, however, when creating modular systems.

An unconnected input implicitly connects to ground. For ground blocks and
ground connections, the default sample time is derived from destination
blocks or the default rule.



Sample Time Propagation

O—>{ ? 20,
In1 Out

All blocks have an inherited sample time (T, = -1). They are all assigned
a sample time of (T, - T.)/50.

Constant Block Sample Times

You can specify a sample time for Constant blocks. This has certain
implications for code generation.

When a sample time of inf is selected for a Constant block,

¢ [f Inline parameters is on, the block takes on a constant sample time,
and propagates a constant sample time downstream.

¢ [f Inline parameters is off, the Constant block inherits its sample time —
which is nonconstant — and propagates that sample time downstream.

Generated code for any block differs when it has a constant sample time; its
outputs are represented in the constant block outputs structure instead of in
the general block outputs structure. The generated code thus reflects that the
Constant block propagates a constant sample time downstream if a sample
time of inf is specified and Inline parameters is on.
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Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call
subsystem, you can use latch options to preserve input values while the
subsystem executes. The Inport block latch options include:

For... You Can Use...

Triggered Latch input by delaying outside signal
subsystems

Function-call Latch input by copying inside signal
subsystems

When you use Latch input by copying inside signal for a function-call
subsystem, the Real-Time Workshop code generator

® Preserves latches in generated code regardless of any optimizations that
might be set
e Places the code for latches at the start of a subsystem’s output/update

function

For more information on these options, see the description of the Inport block
in the Simulink documentation.
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Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model.rtw
file (analogous to an object file generated from a C or C++ file). The model.rtw
file contains all the connection information of the model, as well as the
necessary signal attributes. Thus, the timing engine in can determine when
blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in
hand-written code) in a model. For example, in the next figure the
disconnected_trigger model on the left has its trigger port connected to
ground, which can lead to all blocks inheriting a constant sample time.
Calling the trigger function, f (), directly from user code does not work
correctly and should never be done. Instead, you should use a function-call
generator to properly specify the rate at which f () should be executed, as
shown in the connected_trigger model on the right.

3 fO
Y . . Connected
: Disconnected Function-call Trigger
+ Trigger Generator
v v
fo fo
(G O—In1  Outtl——C1) CiO—In1 Out——>C1)
In1 Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem

Instead of the function-call generator, you could use any other block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of the Real-Time Workshop product is to
build individual models separately and then hand-code the I/O between the
models. This approach places the burden of data consistency between models
on the developer of the models. Another approach is to let the Simulink and
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Real-Time Workshop products ensure data consistency between rates and
generate multirate code for use in a multitasking environment. The Simulink
Rate Transition block is able to interface both periodic and asynchronous
signals. For a description of the Real-Time Workshop libraries, see “Handling
Asynchronous Events” on page 5-34. For more information on multirate code
generation, see Chapter 5, “Scheduling Considerations”.
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Algebraic Loops
Algebraic loops are circular dependencies between variables. This prevents
the straightforward direct computation of their values. For example, in the

case of a system of equations

.x=y+2

[ ] y -X

the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an
intelligent manner, for example, using gradient based search) or “solve” the
system of equations. In the previous example, solving the system into an
explicit form leads to

® 2x =2
oy = -x
* x =1
ey = -1

An algebraic loop exists whenever the output of a block having direct
feedthrough (such as Gain, Sum, Product, and Transfer Fcn) is fed back as an
input to the same block. The Simulink engine is often able to solve models
that contain algebraic loops, such as the next diagram.

&
W
Sine Wave
+
—
- Out1
3 Sum
Caonstant
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The Real-Time Workshop software does not produce code that solves algebraic
loops. This restriction includes models that use Algebraic Constraint blocks
in feedback paths. However, the Simulink engine can often eliminate all

or some algebraic loops that arise, by grouping equations in certain ways

in models that contain them. It does this by separating the update and
output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic
and enabled subsystems, a special consideration applies to some triggered
subsystems. An example for which code can be generated is shown in the
following model and triggered subsystem.

+H H

. ? ]
+H HH H >

Fulze 5
Genearator cope

+

1 Ini ot
Condtant Cut1
mnstan Triggered

Subsystem

The default Simulink behavior is to combine output and update methods for
the subsystem, which creates an apparent algebraic loop, even though the
Unit Delay block in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the
output and update methods of triggered and enabled-triggered subsystems
when necessary and feasible. If you want the Real-Time Workshop code
generator to take advantage of this feature, select the Minimize algebraic
loop occurrences check box in the Subsystem Parameters dialog box. Select
this option to avoid algebraic loop warnings in triggered subsystems involved
in loops.



Algebraic Loops

Note If you always check this box, the generated code for the subsystem
might contain split output and update methods, even if the subsystem is
not actually involved in a loop. Also, if a direct feedthrough block (such as a
Gain block) is connected to the inport in the above triggered subsystem, the
Simulink engine cannot solve the problem, and the Real-Time Workshop
software is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the
Model Referencing pane of the Configuration Parameters dialog box.
Selecting it enables the Real-Time Workshop software to generate code for
models containing Model blocks that are involved in algebraic loops.
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Protecting Intellectual
Property in Shared Model
Components

Real-Time Workshop technology supports two approaches for protecting the
intellectual property of your designs and algorithms in code that is generated
to be shared.

e Use the protected model, a referenced model from which all block and line
information has been eliminated using the Model Protection facility. For
more information, see “Protecting Referenced Models” in the Simulink
documentation

® Use the Real-Time Workshop Embedded Coder shared library system
target file to generate a shared library for a model or subsystem for use
in a system simulation external to Simulink. For more information see
“Creating and Using Host-Based Shared Libraries” in the Real-Time
Workshop Embedded Coder documentation.

You can then deploy the protected model or shared library without sharing
the model itself or its generated source code.
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Stateflow Considerations
for Event-Driven
Applications

If your application model uses Stateflow software to simulate events and
you have a Stateflow Coder product license installed, consider the following
information:

® You can configure a model so that the code generator includes:

Stateflow object comments and descriptions in generated code. See
“Simulink block / Stateflow object comments” and “Stateflow object
descriptions”.

= A summary of Stateflow objects and the corresponding code location
in code generation reports for traceability. See “Traceable Stateflow
objects”.

¢ [f you run a Simulink model in external mode, you can animate states
and view Stateflow test points in floating scopes and signal viewers. See
Chapter 36, “Communicating With Code Executing on a Target System
Using Simulink External Mode”.

® You can generate reusable code from a Stateflow chart, or from a subsystem
containing a chart, except in the following cases:

= The Stateflow chart contains exported graphical functions.
= The Stateflow model contains events that have a machine parent.

For more information on generating reusable code, see “Creating Reusable
Components” on page 3-73.
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Defining Data Representation
and Storage for Code
Generation

e Chapter 9, “Deciding on Data Representation and Storage”

¢ Chapter 10, “Parameter Considerations”

® Chapter 11, “Signal Considerations”

e Chapter 12, “Simulink Data Object Considerations”

e Chapter 13, “Enumerated Data Type Considerations”

e Chapter 14, “Block State Storage and Interfacing Considerations”
e Chapter 15, “Data Store Memory Considerations”






Deciding on Data
Representation and Storage

After you validate a model and produce a specification, you design the
software by using a system simulator or rapid prototyping hardware.

The Real-Time Workshop and Real-Time Workshop Embedded Coder
products support the Simulink built-in data types. In addition, you can use
the Simulink Fixed Point product to specify fixed-point math for Simulink,
Stateflow, and Embedded MATLAB models. Fixed-point processing is
especially important in mass production environments that cannot afford
microprocessors with floating-point units. The process of converting from
floating-point to fixed-point math is time consuming, whether or not you are
using models. The Simulink Fixed Point product includes conversion and
scaling tools that help automate that process.

The Simulink Fixed Point product offers bit-wise accurate simulation results
when compared with the behavior on the actual embedded microprocessor.

It does this by using integer word sizes and other hardware characteristics
that you specify when you configure the model. You do not need to generate
code to perform fixed-point simulation or analysis. However, after assessing
the fixed-point model and confirming that the results match those of the
specification, or other reference, you can generate code for implementation
and further analysis. The Real-Time Workshop Embedded Coder product has
specific features that can help you generate highly efficient fixed-point code.
For example, you can explicitly suppress the generation of floating-point code.


http://www.mathworks.com/products/simfixed/
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Parameter Considerations

¢ “Introduction” on page 10-2

¢ “Nontunable Parameter Storage” on page 10-3

e “Tunable Parameter Storage” on page 10-6

¢ “Tunable Parameter Storage Classes” on page 10-8

¢ “Using the Model Parameter Configuration Dialog Box” on page 10-11
e “Tunable Expressions” on page 10-16

¢ “Linear Block Parameter Tunability” on page 10-20

¢ “Parameter Configuration Quick Reference Diagram” on page 10-22

® “Generated Code for Parameter Data Types” on page 10-23

® “Tunable Workspace Parameter Data Type Considerations” on page 10-29
¢ “Parameter Tuning by Using MATLAB Commands” on page 10-31
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Introduction

This section discusses how the Real-Time Workshop product generates
parameter storage declarations, and how you can generate the storage
declarations you need to interface block parameters to your code.

If you are using S-functions in your model and intend to tune their run-time
parameters in the generated code, see “Tuning Run-Time Parameters” in the
Simulink documentation. Note that

¢ Parameters must be numeric, logical, or character arrays.
e Parameters may not be sparse.

¢ Parameter arrays must not be greater than 2 dimensions.

For guidance on implementing a parameter tuning interface using a C API,
see Chapter 34, “Interacting with Target Application Signals and Parameters
Using the C APT".

Simulink external mode offers a way to monitor signals and modify parameter
values while generated model code executes. However, external mode might
not be appropriate for your application in some cases. The S-function target
does not support external mode, for example. For other targets, you might
want your existing code to access parameters and signals of a model directly,
rather than using the external mode communications mechanism. For
information on external mode, see Chapter 36, “Communicating With Code
Executing on a Target System Using Simulink External Mode”.



Nontunable Parameter Storage

Nontunable Parameter Storage

By default, block parameters are not tunable in the generated code. When
Inline Parameters is off (the default), the Real-Time Workshop product

has control of parameter storage declarations and the symbolic naming of
parameters in the generated code.

Nontunable parameters are stored as fields within model P (formerly rtpP),
a model-specific global parameter data structure. The Real-Time Workshop
product initializes each field of model P to the value of the corresponding
block parameter at code generation time.

When the Inline parameters option is on, block parameters are evaluated at
code generation time, and their values appear as constants in the generated
code, if possible (in certain circumstances, parameters cannot be inlined, and

are then included in a constant parameter or model parameter structure.)

As an example of nontunable parameter storage, consider the following model.

ﬁU” v

Ot
Sine Wave Zain

The workspace variable Kp sets the gain of the Gain block.
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=) Function Block Parameters: Gain E

Gain
(Element—wise gain (v = K. *u) or matrix gain {y = K*0or v = 0¥k,

Mlain | Signal Attributes I Parameter Attributes I

Gain:

E

Mulkiplication: IEIement-wise(K.*u) :I

Sample time (-1 for inherited):

-1

J a4 I Zancel Help Apply

Assume that Kp is nontunable and has a value of 5.0. The next table shows
the variable declarations and the code generated for Kp in the noninlined
and inlined cases.

The generated code does not preserve the symbolic name Kp. The noninlined
code represents the gain of the Gain block as model P.Gain_Gain. When Kp is
noninlined, the parameter is tunable.

Inline
Parameters

Generated Variable Declaration and Code

Off

struct Parameters_non_tunable sin { real T SineWave_Amp;
real T SineWave_Bias;
real T SineWave_Freq;
real_T SineWave_Phase;
real_T Gain_Gain;

b

Parameters_non_tunable_sin non_tunable_sin P = {
1.0 , /* SineWave_Amp : '<Root>/Sine Wave' */
0.0 , /* SineWave Bias : '<Root>/Sine Wave' */




Nontunable Parameter Storage

Inline Generated Variable Declaration and Code
Parameters
1.0 , /* SineWave Freq : '<Root>/Sine Wave' */
0.0 , /* SineWave_Phase : '<Root>/Sine Wave' */
5.0 /* Gain_Gain : '<Root>/Gain' */
}s
non_tunable_sin_Y.Out1 = rtb_u *
non_tunable_sin_P.Gain_Gain;
On

non_tunable_sin_Y.Out1 = rtb_u * 5.0;
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Tunable Parameter Storage

A tunable parameter is a block parameter whose value can be changed at
run-time. A tunable parameter is inherently noninlined. Consequently, when
Inlined parameters is off, all parameters are members of model P, and thus
are tunable. A tunable expression is an expression that contains one or more
tunable parameters.

When you declare a parameter tunable, you control whether or not the
parameter is stored within model P. You also control the symbolic name of
the parameter in the generated code.

When you declare a parameter tunable, you specify

® The storage class of the parameter.

The storage class property of a parameter specifies how the Real-Time
Workshop product declares the parameter in generated code.

The term “storage class,” as used in the Real-Time Workshop product, is not
synonymous with the term storage class specifier, as used in the C language.

® A storage type qualifier, such as const or volatile. This is simply a string
that is included in the variable declaration, without error checking.

¢ (Implicitly) the symbolic name of the variable or field in which the
parameter is stored. The Real-Time Workshop product derives variable
and field names from the names of tunable parameters.

The Real-Time Workshop product generates a variable or struct storage
declaration for each tunable parameter. Your choice of storage class controls
whether the parameter is declared as a member of model P or as a separate
global variable.

You can use the generated storage declaration to make the variable visible
to external legacy code. You can also make variables declared in your code
visible to the generated code. You are responsible for properly linking your
code to generated code modules.

You can use tunable parameters or expressions in your root model and
in masked or unmasked subsystems, subject to certain restrictions. (See
“Tunable Expressions” on page 10-16.)
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Overriding Inlined Parameters for Tuning

When the Inline parameters option is selected, you can use the Model
Parameter Configuration dialog box to remove individual parameters from
inlining and declare them to be tunable. This allows you to improve overall
efficiency by inlining most parameters, while at the same time retaining the
flexibility of run-time tuning for selected parameters. Another way you can
achieve the same result is by using Simulink data objects; see Chapter 12,
“Simulink Data Object Considerations” for specific details.

The mechanics of declaring tunable parameters are discussed in “Using the
Model Parameter Configuration Dialog Box” on page 10-11.
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Tunable Parameter Storage Classes

The Real-Time Workshop product defines four storage classes for tunable
parameters. You must declare a tunable parameter to have one of the
following storage classes:

SimulinkGlobal (Auto): This is the default storage class. The Real-Time
Workshop product stores the parameter as a member of model P. Each
member of model P is initialized to the value of the corresponding
workspace variable at code generation time.

ExportedGlobal: The generated code instantiates and initializes the
parameter and model.h exports it as a global variable. An exported global
variable is independent of the model P data structure. Each exported
global variable is initialized to the value of the corresponding workspace
variable at code generation time.

ImportedExtern: model private.h declares the parameter as an extern
variable. Your code must supply the proper variable definition and
initializer.

ImportedExternPointer: model private.h declares the variable as

an extern pointer. Your code must supply the proper pointer variable
definition and initializer, if any.

The generated code for model.h includes model private.h to make the
extern declarations available to subsystem files.

As an example of how the storage class declaration affects the code generated
for a parameter, consider the next figure.



Tunable Parameter Storage Classes

E! Function Block Parameters: Gainl E

Gain
’7Element—wise gain (v = K. *u) or matrix gain {y = K*0or v = 0¥,

Main | Signal Attributes I Parameter Attributes I

Gain:

3

Mulkiplication: IEIement—wise(K.*u) j

Sample time (-1 for inherited):

-1

J [al'4 I Cancel Help Apply

The workspace variable Kp sets the gain of the Gain1 block. Assume that
the value of Kp is 3.14. The following table shows the variable declarations
and the code generated for the gain block when Kp is declared as a tunable
parameter. An example is shown for each storage class.

Note The Real-Time Workshop product uses column-major ordering

for two-dimensional signal and parameter data. When interfacing your
hand-written code to such signals or parameters by using ExportedGlobal,
ImportedExtern, or ImportedExternPointer declarations, make sure that
your code observes this ordering convention.

The symbolic name Kp is preserved in the variable and field names in the
generated code.
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Storage Class

Generated Variable Declaration and Code

SimulinkGlobal
(Auto) typedef struct _Parameters_tunable_sin
Parameters_tunable_sin;
struct _Parameters_tunable_sin {
real T Kp;
b
Parameters_tunable_sin tunable_sin P =
3.14
b
tunable_sin_Y.Out1 rtb_u *
tunable_sin_P.Kp;
ExportedGlobal
real T Kp = 3.14;
tunable_sin_Y.Out1 rtb_u * Kp;
ImportedExtern
extern real_T Kp;
tunable_sin_Y.Out1 rtb_u * Kp;
ImportedExtern
Pointer extern real T *Kp;
tunable_sin_Y.Out1 rtb_u * (*Kp);

10-10



Using the Model Parameter Configuration Dialog Box

Using the Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box is available only when the
Inline parameters check box on the Optimization pane is selected.
Selecting this check box activates the Configure button, as shown in the
next figure.

Dptimization

— Simulation and code generation
v Block reduction v Conditional input branch execution

[¥ Implement logic signals as boolean data (vs. double) ¥ sSignal skorage reuse

[v Inline parameters Configure ... |

Application lifespan (dawys) IinF

Zode generation
e I

Clicking the Configure button opens the Model Parameter Configuration
dialog box.

Note The Model Parameter Configuration dialog box cannot tune parameters
within referenced models. See “Parameterizing Model References” for tuning
techniques that work with referenced models.
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=, ): Model Parameter Configuration: 14 -0 x|
rDescription
Define the global (tunable) parameters for your model. These parameters affect:
1. the simulation by prowiding the ability to tune parameters during execution, and
2. the code by enabling accessto p by other modules.
Source list Global {tunahle) parameters
MATLAR workspace ﬂ Mamea Storage class | Starage type gualifier
| | 1lacional [ExportedGlobal jl -
Mame | 2| anEern [ImportedExem ﬂl v
a —
2|2 3| anEsemp [ mportedExemPaint... jl -
230 s SimulinkGlabal (Auto) v || -
23|aglobal —
24| anExtern
25| anExternP
26k
27|cmdgain
28|g
29 kP -
Refresh list Add to table == Mewr | Remove |
Ready 0K | Cancel | Help | Apply |

The Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box lets you select base workspace
variables and declare them to be tunable parameters in the current model.
The dialog box is divided into two panels:

® The Source list panel displays a list of workspace variables and lets you
add them to the tunable parameters list.

* The Global (tunable) parameters panel displays and maintains a list of
tunable parameters associated with the model.

To declare tunable parameters, you select one or more variables from the
Source list, add them to the Global (tunable) parameters list, and set
their storage class and other attributes.

Source List Panel

The Source list panel displays a menu and a scrolling table of numerical
workspace variables.



Using the Model Parameter Configuration Dialog Box

The menu lets you choose the source of the variables to be displayed in the
list. There are two choices: MATLAB workspace (lists all variables in the
MATLAB workspace that have numeric values), and Referenced workspace
variables (lists only those variables referenced by the model). The source list
displays names of variables defined in the MATLAB base workspace.

Selecting one or more variables from the source list enables the Add to
table button. Clicking Add to table adds selected variables to the tunable
parameters list in the Global (tunable) parameters panel. This action

1s all that is necessary to declare tunable parameters. However, if a block
parameter which is not tunable is set to the name that appears on this list, a
warning results during simulation and also during code generation.

In the Source list, the names of variables added to the tunable parameters
list are displayed in bold type (see the preceding figure).

The Refresh list button updates the table of variables to reflect the current
state of the workspace. If you define or remove variables in the workspace
while the Model Parameter Configuration dialog box is open, click the
Refresh list button when you return to the dialog box. The new variables
are added to the source list.

Global (Tunable) Parameters Panel

The Global (tunable) parameters panel displays a scrolling table of
variables that have been declared tunable in the current model and lets you
specify their attributes. The Global (tunable) parameters panel also lets
you remove entries from the list or create new tunable parameters.

You select individual variables and change their attributes directly in the
table. The attributes are
® Storage class of the parameter in the generated code. Select one of

= SimulinkGlobal (Auto)

= ExportedGlobal

= ImportedExtern

= ImportedExternPointer
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See “Tunable Parameter Storage Classes” on page 10-8 for definitions.

* Storage type qualifier of the variable in the generated code. For
variables with any storage class except SimulinkGlobal (Auto), you can
add a qualifier (such as const or volatile) to the generated storage
declaration. To do so, you can select a predefined qualifier from the list or
add additional qualifiers to the list. The code generator does not check the
storage type qualifier for validity. The code generator includes the qualifier
string in the generated code without syntax checking.

® Name of the parameter. This field is used only when creating a new
tunable variable.

Use the New button to create a new tunable variable entry in the Global
(tunable) parameters list. Enter the name and attributes of the variable
and click Apply. The new variable does not need to be in use when you do
this. At a later time, you can add references to any such variable in the model.

If the name you enter matches the name of an existing workspace variable in
the Source list, that variable is declared tunable and appears in italics in
the Source list.

Use the Remove button to delete selected variables from the Global
(tunable) parameters list. All removed variables are inlined if Inlined
parameters is on.

Note If you edit the name of an existing variable in the list, you actually
create a new tunable variable with the new name. The previous variable is
removed from the list and loses its tunability (that is, it is inlined).

Declaring Tunable Variables
To declare an existing variable tunable

1 Open the Model Parameter Configuration dialog box.
2 In the Source list panel, click the desired variable in the list to select it.

3 Click the Add to table button. The variable then appears in the table of
tunable variables in the Global (tunable) parameters panel.



Using the Model Parameter Configuration Dialog Box

4 Click the variable in the Global (tunable) parameters panel.
5 Select the desired storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier, such as const or
volatile that you want the variable to have.

7 Click Apply, or click OK to apply changes and close the dialog box.
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The Real-Time Workshop product supports the use of tunable variables in
expressions. An expression that contains one or more tunable parameters is
called a tunable expression.

Tunable Expressions in Masked Subsystems

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem in the next figure. The
masked variable k sets the gain parameter of theGain.

In1 Cutl

theain

Suppose that the base workspace variable b is declared tunable with
SimulinkGlobal (Auto) storage class. The next figure shows the tunable
expression b*3 in the subsystem’s mask dialog box.

IBlock Parameters: masker1 x|

—Subzystem [maszk)

—Parameters
K
CE

ak. LCancel | Help | Apply |

Tunable Expression in Subsystem Mask Dialog Box

The Real-Time Workshop product produces the following output computation
for theGain. The variable b is represented as a member of the global
parameters structure, model P. (For clarity in showing the individual Gain
block computation, expression folding is off in this example.)
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/* Gain: '<S1>/theGain' */
rtb_theGain_C = rtb_SineWave_n * ((subsys_mask P.b * 3.0));

/* Outport: '<Root>/OQut1' */
subsys_mask_Y.Out1 = rtb_theGain_C;

As this example shows, for GRT targets, the parameter structure is mangled
to create the structure identifier model P (subject to the identifier length
constraint). This is done to avoid namespace clashes in combining code from
multiple models using model reference. ERT-based targets provide ways to
customize identifier names.

When expression folding is on, the above code condenses to

/* Outport: '<Root>/Outl1' incorporates:
* Gain: '<81>/theGain’
*/
subsys_mask_Y.Out1 = rtb_SineWave n * ((subsys_mask P.b * 3.0));

Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

As an example, consider the subsystem above, modified as follows:
® The mask initialization code is
t =3 * K;

¢ The parameter k of the myGain block is 4 + t.

® Workspace variable b = 2. The expression b * 3 is plugged into the mask
dialog box as in the preceding figure.

Since the mask initialization code can run only once, k is evaluated at code
generation time as

4+ (3 * (2*3))

The Real-Time Workshop product inlines the result. Therefore, despite the
fact that b was declared tunable, the code generator produces the following
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output computation for theGain. (For clarity in showing the individual Gain
block computation, expression folding is off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunable Expression Limitations

Currently, there are certain limitations on the use of tunable variables in
expressions. When an unsupported expression is encountered during code
generation a warning is issued and the equivalent numeric value is generated
in the code. The limitations on tunable expressions are

¢ (Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

® The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of
operators or functions, classified in the following table:

Category | Operators or Functions

1 + - F ] <> <= >= == ~-= & |

2 *

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh
exp, floor, log, 1og10, sign, sin, sinh, sqrt, tan, tanh,

4 single, int8, int16, int32, uint8, uint16, uint32

O I e e O

The rules applying to each category are as follows:

Category 1 1s unrestricted. These operators can be used in tunable
expressions with any combination of scalar or vector operands.

Category 2 operators can be used in tunable expressions where at least
one operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

Category 3 lists all functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to any other functions lose their tunability.
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= Category 4 lists the casting functions that do not support tunable
arguments. Tunable arguments passed to these functions lose their
tunability.

Note The Real-Time Workshop product casts values using MATLAB
typecasting rules. The MATLAB typecasting rules are different from C
code typecasting rules. For example, using the MATLAB typecasting
rules, int8(3.7) returns the result 4, while in C code int8(3.7) returns
the result 3. See “Data Type Conversion” in the MATLAB reference
documentation for more information on MATLAB typecasting.

= Category 5 operators are not supported.

Note The “dot” (structure membership) operator is not supported. This
means that expressions that include a structure member are not tunable.

Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

The Fen block does not support tunable expressions in code generation.

Model workspace parameters can take on only the Auto storage class, and
thus are not tunable. See “Parameterizing Model References” for tuning
techniques that work with referenced models.

Non-double expressions are not supported.

Blocks that access parameters only by address support the use of tunable
parameters, if the parameter expression is a simple variable reference.
When an operation such as a data type conversion or a math operation is
applied, the Real-Time Workshop product creates a nontrivial expression
that cannot be accessed by address, resulting in an error during the build
process.
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Linear Block Parameter Tunability

The following blocks have a Realization parameter that affects the
tunability of their parameters:

¢ Transfer Fcn

® State-Space

® Discrete State-Space

The Realization parameter must be set by using the MATLAB set_param
function, as in the following example.

set_param(gcb, 'Realization', 'auto')
The following values are defined for the Realization parameter:
e general: The block’s parameters are preserved in the generated code,

permitting parameters to be tuned.

e sparse: The block’s parameters are represented in the code by transformed
values that increase the computational efficiency. Because of the
transformation, the block’s parameters are no longer tunable.

e auto: This setting is the default. A general realization is used if one or
more of the block’s parameters are tunable. Otherwise sparse is used.

Note To tune the parameter values of a block of one of the above types
without restriction during an external mode simulation, you must set
Realization to general.

Code Reuse for Subsystems with Mask Parameters

The Real-Time Workshop product can generate reusable (reentrant) code for
a model containing identical atomic subsystems. Selecting the Reusable
function option for Real-Time Workshop system code enables such code
reuse, and causes a single function with arguments to be generated that is
called when any of the identical atomic subsystem executes. See “Reusable
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Function Option” on page 3-73 for details and restrictions on the use of this
option.

Mask parameters become arguments to reusable functions. However, for
reuse to occur, each instance of a reusable subsystem must declare the same
set of mask parameters. If, for example subsystem A has mask parameters
b and K, and subsystem B has mask parameters ¢ and K, then code reuse is
not possible, and the Real-Time Workshop product will generate separate
functions for A and B.
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Parameter Configuration Quick Reference Diagram

The next figure shows the code generation and storage class options that
control the representation of parameters in generated code.

Kp =5.0;

[OFF]

Inline
Parameters
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ON

o=

REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

7’

.

y = u* (rtP.<???>); in a global structure

Include parameters as fields

(field names based on block names)

J

REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

/ = u* (5.0); Use numeric value of )
[Auto] < y e parameter (if possible)
(implicit) \ const *p <???> = &rtP.<???>[0];
for (i=0; i<N; i++){ Otherwise, include in a
y[i] = u * (p_<???>[i]); constant global structure
}
- J
INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS
[ _ . Includeina ] I
[SimulinkGlobal(Auto)] y = u* (rtP.Kp); global structure
ExportedGlobal y = u* (Kp);
Symbol preserved
|mportedExtern E y = u* (Kp); Unstructured (mUSt be unlque)

\_

ImportedExternPointer y = u* (*Kp);

storage

— J

KEY:

[option] : default for code generation option
<???>: RTW generated symbol for parameter storage field
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Generated Code for Parameter Data Types

For an example of the code generated from Simulink parameters with
different data types, run the demo model rtwdemo_paramdt. This demo model
shows options that are available for controlling the data type of tunable
parameters in the generated code. The model’s subsystem includes several
instances of Gain blocks feeding Saturation blocks. Each pair of blocks uses a
workspace variable of a particular data type, as shown in the next figure.
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nlined parameters (InLineParameters ON + Auto storage class)

==> numeric value inlined
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Generated Code for Parameter Data Types

The Simulink engine initializes the parameters in the demo model

by executing the script rtwdemo_paramdt_data.m. You can view the
Initialization script and inspect the workspace variables in Model Explorer by
double-clicking the appropriate yellow boxes in the demo model.

In the demo model, note that the Inline parameters option on the
Optimization pane of the Configuration Parameters dialog box is
selected. The Model Parameter Configuration dialog box reveals that

all base workspace variables (with the exception of Kinline) have their
Storage class property set to ExportedGlobal. Consequently, Kinline is a
nontunable parameter while the remaining variables are tunable parameters.

To generate code for the demo model, double-click the blue boxes. The
following table shows both the MATLAB code used to initialize parameters
and the code generated for each parameter in the rtwdemo_paramdt model.

Parameter & MATLAB Code Generated Variable Declaration and Code

Kinline

Kinline = 2;

rtb_Gain1 = rtwdemo_paramdt_U.In1 * 2.0F;

rtwdemo_paramdt_Y.Out1 = rt_SATURATE(rtb_Gain1, 0.0F, 2.0F);

Kes

Kcs = 3;

real32_T Kcs = 3.0F;

rtb_Gain1 = rtwdemo_paramdt_U.In2 * Kcs;

rtwdemo_paramdt_Y.Out2 = rt_SATURATE(rtb_Gaini, 0.0F, Kcs);
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Parameter & MATLAB Code Generated Variable Declaration and Code

Ksingle
real32_T Ksingle = 4.0F;
Ksingle = single(4);

rtb_Gain1 = rtwdemo_paramdt_U.In3 * Ksingle;

rtwdemo_paramdt_Y.Out3 = rt_SATURATE(rtb_Gaini, 0.0F, Ksingle);

Kint8
int8_T Kint8 = 5;
Kint8 = int8(5);

rtb_Gain1 = rtwdemo_paramdt_U.In4 * ((real32_T)( Kint8 ));

rtwdemo_paramdt_Y.Out4 = rt_SATURATE(rtb_Gaini, 0.0F,
((real32_T)( Kint8 )));

Kfixpt
int16_T Kfixpt = 192;
Kfixpt = Simulink.Parameter;

Kfixpt.value = 6;

Kfixpt.DataType = ... rtb_Gaini = rtwdemo_paramdt_U.In5 *

'fixdt(true, 16, 2°-5, 0)'; (((real32_T)ldexp((real_T)Kfixpt, -5)));

Kfixpt.RTWInfo.StorageClass = ...
'ExportedGlobal’;

rtwdemo_paramdt_Y.Out5 = rt_SATURATE(rtb_Gaint, 0.0F,
(((real32_T)ldexp((real_T)Kfixpt, -5))));
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Parameter & MATLAB Code

Generated Variable Declaration and Code

Kalias

aliasType = ...
Simulink.AliasType('single');

Kalias = Simulink.Parameter;

Kalias.Value = 7;

Kalias.DataType = 'aliasType';

Kalias.RTWInfo.StorageClass = ...
'ExportedGlobal’;

typedef real32_T aliasType;

aliasType Kalias

rtwdemo_paramdt_Y.Outé

rtwdemo_paramdt_U.In6 * Kalias;

rt_SATURATE(rtb_Gaini, 0.0F, Kalias);

Kuser

userType = Simulink.NumericType;

userType.DataTypeMode = ...
'Fixed-point: slope and bias scaling';

userType.Slope = 2"-3;

userType.isAlias = true;

Kuser = Simulink.Parameter;

Kuser.Value = 8;

Kuser.DataType = 'userType';

Kuser.RTWInfo.StorageClass = ...
'ExportedGlobal’;

typedef int16_T userType;

userType Kuser

rtwdemo_paramdt_Y.Out7

rtwdemo_paramdt_U.In7 *

(((real32_T)ldexp((real_T)Kuser, -3)));

rt_SATURATE (rtb_Gaini, 0.0F,
(((real32_T)ldexp((real_T)Kuser, -3))));

The salient features of the code generated for this demo model are as follows:

® The Real-Time Workshop product inlines nontunable parameters,
for example, Kinline. However, the product does not inline tunable
parameters, such as Kcs, Ksingle, and Kint8.

e The Simulink engine treats tunable parameters of data type double in a
context-sensitive manner, such that the parameter inherits its data type
from the context in which the block uses it. For example, Kcs inherits a
single data type from the Gain block’s input signal.
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e [f a parameter’s data type matches that of the block’s run-time parameter,

the block can use the tunable parameter without any transformation.
Consequently, the Real-Time Workshop product need not cast the
parameter from one data type to another, as illustrated by Ksingle and
Kalias. However, if a parameter’s data type does not match that of the
block’s run-time parameter, the block cannot readily compute its output. In
this case, the product casts parameters to the appropriate data type. For
example, Kint8, Kfixpt, and Kuser require casts to a single data type for
compatibility with the input signals to the Gain and Saturation blocks.

If you are using an ERT target and a parameter specifies a data type alias,
for example, created by an instance of the Simulink.AliasType class, its
variable definition in the generated code uses the alias data type. For
example, the Real-Time Workshop product declares Kalias and Kuser to
be of data types aliasType and userType, respectively.

If a parameter specifies a fixed-point data type, the Real-Time Workshop
product initializes its value in the generated code to the value of Q
computed from the expression V = SQ + B (see the Simulink Fixed Point
documentation for more information about fixed-point semantics and
notation), where

= V is a real-world value

= @Q is an integer that encodes V
= S is the slope

= B is the bias

For example, Kfixpt has a real-world value of 6, slope of 25, and bias of 0.
Consequently, the product declares the value of Kfixpt to be 192.
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Tunable Workspace Parameter Data Type Considerations

If you are using tunable workspace parameters, you need to be aware of
potential issues regarding data types. A workspace parameter is tunable
when the following conditions exist:

® You select the Inline parameters option on the Optimization pane of
the Configuration Parameters dialog box

® The parameter has a storage class other than Auto

When generating code for tunable workspace parameters, the Real-Time
Workshop product checks and compares the data types used for a particular
parameter in the workspace and in Block Parameter dialog boxes.

If...

The Real-Time Workshop Product...

The data types match

Uses that data type for the parameter in the
generated code.

You do not explicitly
specify a data type
other than double in
the workspace

Uses the data type specified by the block in
the generated code. If multiple blocks share a
parameter, they must all specify the same data
type. If the data type varies between blocks,
the product generates an error similar to the
following:

Variable 'K' is used in incompatible ways
in the dialog fields of the following:
cs_params/Gain, cs_params/Gaini. The
variable'value is being used both directly
and after a transformation. Only one of
these usages is permitted for any given
variable.

You explicitly specify
a data type other
than double in the
workspace

Uses the data type from the workspace for the
parameter. The block typecasts the parameter to
the block specific data type before using it.
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Guidelines for Specifying Data Types

The following table provides guidelines on specifying data types for tunable

workspace parameters.

If You Want to...

Then Specify Data Types in...

Minimize memory usage (int8
instead of single)

The workspace explicitly

Avoid typecasting

Blocks only

Interface to legacy or custom code

The workspace explicitly

Use the same parameter for
multiple blocks that specify
different data types

The workspace explicitly

The Real-Time Workshop product enforces limitations on the use of data
types other than double in the workspace, as explained in “Limitations on
Specifying Data Types in the Workspace Explicitly” on page 10-30.

Limitations on Specifying Data Types in the

Workspace Explicitly

When you explicitly specify a data type other than double in the workspace,

blocks typecast the parameter to the appropriate data type. This is an issue for
blocks that use pointer access for their parameters. Blocks cannot use pointer
access if they need to typecast the parameter before using it (because of a data

type mismatch). Another case in which this occurs is for workspace variables
with bias or fractional slope. Two possible solutions to these problems are

* Remove the explicit data type specification in the workspace for parameters

used in such blocks.

® Modify the block so that it uses the parameter with the same data type
as specified in the workspace. For example, the Lookup Table block uses
the data types of its input signal to determine the data type that it uses
to access the X-breakpoint parameter. You can prevent the block from
typecasting the run-time parameter by converting the input signal to
the data type used for X-breakpoints in the workspace. (Similarly, the
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output signal is used to determine the data types used to access the lookup
table’s Y data.)

Parameter Tuning by Using MATLAB Commands

When parameters are MATLAB workspace variables, the Model Parameter
Configuration dialog box is the recommended way to see or set the attributes
of tunable parameters. In addition to that dialog box, you can also use
MATLAB get_param and set_param commands.

Note You can also use Simulink.Parameter objects for tunable parameters.
See “Configuring Parameter Objects for Code Generation” on page 12-4 for
details.

The following commands return the tunable parameters and/or their
attributes:

® get_param(gcs, 'TunableVars')

® get_param(gcs, 'TunableVarsStorageClass')

® get _param(gcs, 'TunableVarsTypeQualifier')
The following commands declare tunable parameters or set their attributes:

® set_param(gcs, 'TunablevVars', str)
The argument str (string) is a comma-separated list of variable names.
® set_param(gcs, 'TunableVarsStorageClass', str)

The argument str (string) is a comma-separated list of storage class
settings.

The valid storage class settings are
= Auto
= ExportedGlobal

= ImportedExtern
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= ImportedExternPointer
® set_param(gcs, 'TunableVarsTypeQualifier', str)

The argument str (string) is a comma-separated list of storage type
qualifiers.

The following example declares the variable k1 to be tunable, with storage
class ExportedGlobal and type qualifier const. The number of variables and
number of specified storage class settings must match. If you specify multiple
variables and storage class settings, separate them with a comma.

set_param(gcs, 'Tunablevars', 'ki1')
set_param(gcs, 'TunableVarsStorageClass','ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier', 'const')

Other configuration parameters you can get and set are listed in
“Configuration Parameters for Simulink Models” in the Real-Time Workshop
Reference.
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Introduction

The Real-Time Workshop product offers a number of options that let you
control how signals in your model are stored and represented in the generated
code. This section discusses how you can use these options to

¢ Control whether signal storage is declared in global memory space or
locally in functions (that is, in stack variables).
¢ Control the allocation of stack space when using local storage.

¢ Ensure that particular signals are stored in unique memory locations by
declaring them as test points.

¢ Reduce memory usage by instructing the Real-Time Workshop product
to store signals in reusable buffers.

¢ Control whether or not signals declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

¢ Preserve the symbolic names of signals in generated code by using signal
labels.

The discussion in the following sections refers to code generated from
signal_examp, the model shown in the next figure.

=um Sig >|2' gain Sig

Cut1

D613

Constant

Signal_examp Model
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Signal Storage Concepts

This section discusses structures and concepts you must understand to choose
the best signal storage options for your application:

® The global block I/O data structure model B

¢ The concept of signal storage classes as used in the Real-Time Workshop
product

The Global Block 1/0 Structure

By default, the Real-Time Workshop product attempts to optimize memory
usage by sharing signal memory and using local variables.

However, there are a number of circumstances in which it is desirable or
necessary to place signals in global memory. For example,

®* You might want a signal to be stored in a structure that is visible to
externally written code.

® The number and/or size of signals in your model might exceed the stack
space available for local variables.

In such cases, it is possible to override the default behavior and store selected
(or all) signals in a model-specific global block 1/0 data structure. The global
block I/0 structure is called model B (in earlier versions this was called rtB).

The following code shows how model B is defined and declared in code
generated (with signal storage optimizations off) from the signal examp
model shown in the Signal_examp Model on page 11-2 figure.

(in signal_examp.h)
/* Block signals (auto storage) */
extern BlockIO_signal examp signal_examp_B;

(in signal_examp.c)

/* Block signals (auto storage) */
BlockIO_signal examp signal_examp_B;
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Field names for signals stored in model B are generated according to the
rules described in “Symbolic Naming Conventions for Signals in Generated
Code” on page 11-15.

Signals Storage Classes

In the Real-Time Workshop product, the storage class property of a signal
specifies how the product declares and stores the signal. In some cases this
specification is qualified by more options.

In the context of the Real-Time Workshop product, the term “storage class”
1s not synonymous with the term storage class specifier, as used in the C
language.

Default Storage Class

Auto is the default storage class. Auto is the appropriate storage class for
signals that you do not need to interface to external code. Signals with Auto
storage class can be stored in local and/or shared variables or in a global data
structure. The form of storage depends on the Signal storage reuse, Reuse
block outputs, Enable local block outputs, and Minimize data copies
between local and global variables options, and on available stack space.
See “Signals with Auto Storage Class” on page 11-6 for a full description of
code generation options for signals with Auto storage class.

Explicitly Assigned Storage Classes

Signals with storage classes other than Auto are stored either as members
of model B, or in unstructured global variables, independent of model B.
These storage classes are appropriate for signals that you want to monitor
and/or interface to external code.

The Signal storage reuse, Enable local block outputs, Reuse block
outputs, Eliminate superfluous local variables (Expression folding),
and Minimize data copies between local and global variables
optimizations do not apply to signals with storage classes other than Auto.

Use the Signal Properties dialog box to assign these storage classes to signals:
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SimulinkGlobal(Test Point): Test points are stored as fields of the
model B structure that are not shared or reused by any other signal. See
“Signals with Test Points” on page 11-12 for more information.

ExportedGlobal: The signal is stored in a global variable, independent

of the model B data structure. model.h exports the variable. Signals
with ExportedGlobal storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 11-13 for more information.

ImportedExtern: model private.h declares the signal as an extern
variable. Your code must supply the proper variable definition. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 11-13 for more information.

ImportedExternPointer: model private.h declares the signal as an
extern pointer. Your code must define a valid pointer variable. Signals
with ImportedExtern storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 11-13 for more information.
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Signals with Auto Storage Class

Options are available for signals with Auto storage class:

Signal storage reuse

Enable local block outputs

Reuse block outputs

Eliminate superfluous local variables (Expression folding)

e Minimize data copies between local and global variables

Use these options to control signal memory reuse and choose local or global
(model B) storage for signals. The Signal storage reuse option is on the

Optimization pane of the Configuration Parameters dialog box, as shown in
the next figure.

Optimization

— Simulation and code generation el

¥ Block reduction v Conditional input: branch execution

¥ Implement logic signals as boolean data (vs. double) | ¥ Signal starage reuse

[ Inline parameters Configure ... |

Application ifespan (days) IinF

— Code generation

— Signals
¥ Enable local black cutputs V¥ Reuse block outputs
[ Ignote integer downcasts in Folded expressions [ Infine invariant signals
¥ Eliminate superfluous local vwariables (Expression Folding)

[ Minimize data copies between local and global wariables

Loop untalling threshald: |5 LI

\), Revert Help &pply |

When you select Signal storage reuse, the Enable local block
outputs, Reuse block outputs, Eliminate superfluous local variables
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(Expression folding), and Minimize data copies between local and
global variables options in the Code Generation section of the dialog box
are enabled.

These options interact. When the Signal storage reuse option is selected,

®* The Reuse block outputs option is enabled and selected, and signal
memory is reused whenever possible.

e The Enable Local block outputs option is enabled and selected. This
lets you choose whether reusable signal variables are declared as local
variables in functions or as members of model B.

¢ The Eliminate superfluous local variables (Expression folding)
is enabled and selected, and block computations collapse into single
expressions.

* The Minimize data copies between local and global variables is
enabled and cleared, and global memory is not reused.

The following code examples illustrate the effects of the Signal storage
reuse, Enable Local block outputs, Reuse block outputs, Eliminate
superfluous local variables (Expression folding) and Minimize data
copies between local and global variables options. The examples were
generated from the signal examp model (see figure Signal_examp Model
on page 11-2).

The first example illustrates signal storage optimization, with Signal
storage reuse, Enable Local block outputs, Reuse block outputs, and
Minimize data copies between local and global variables selected. (For
clarity in showing the individual Gain and Sum block computation, expression
folding is off in this example.) The output signal from the Sum block reuses
signal_examp_Y.Out1, a variable local to the model output function.

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>Sum' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>>/Int'
*/
signal_examp_Y.Out1 = signal examp_U.In1 + signal_examp_P.Constant_Value;
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/* Gain: '<Root>/Gain' */
signal_examp_Y.Out1 = signal_examp_P.Gain_Gain * signal_examp_Y.Out1;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER(tid);

If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse. The following
example was generated with Enable local block outputs cleared and
Signal storage reuse, Reuse block outputs, and Minimize data copies
between local and global variables selected. The output signals from
the Sum and Gain blocks use global structure signal_examp_B rather than
declaring local variables and in both cases the signal name is gainSig.

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>/Add' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>/Int'
*/
signal_examp_B.gainSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */
signal_examp_B.gainSig = signal_examp_P.Gain_Gain *
signal examp_B.gainSig;

/* Outport: '<Root>/Outl' */
signal_examp_Y.Outl = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER (tid) ;
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When the Signal storage reuse option is cleared, Reuse block outputs,
Enable local block outputs, and Minimize data copies between local
and global variables are disabled. This makes the block output signals
global and unique, signal examp B.sumSig and signal examp_ B.gainSig,
as shown in the following code.

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>/Add' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>/Int'
*/
signal_examp_B.sumSig = signal_ examp_U.Ini +
signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */
signal_examp_B.gainSig = signal_examp_P.Gain_Gain *
signal_examp_B.sumSig;

/* Outport: '<Root>/Outtl' */
signal_examp_Y.Outl = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER (tid) ;

In large models, disabling Signal storage reuse can significantly increase
RAM and ROM usage. Therefore, this approach is not recommended for code
deployment; however it can be useful in rapid prototyping environments.

The following table summarizes the possible combinations of the Signal

storage reuse / Reuse block outputs and Enable local block outputs
options.
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Signal storage reuse
and Reuse block
outputs ON

Signal storage reuse
OFF

(Reuse block outputs
disabled)

Enable local block
outputs ON

Reuse signals in
local memory (fully
optimized)

N/A

Enable local block
outputs OFF

Reuse signals in
model_B structure

Individual signal
storage in model B
structure

Controlling Stack Space Allocation
When the Enable local block outputs option is on, the following TLC

variables constrain the use of stack space by local block output variables:

® MaxStackSize: The maximum number of bytes the Real-Time Workshop

product allocates for local variables declared by all block outputs in a
model. MaxStackSize can be any positive integer. If the total size of local
block output variables exceeds this maximum, the product allocates the
remaining block output variables in global, rather than local, memory. The
default value for MaxStackSize is Inf, that is, unlimited stack size.

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using run-time (empirical) analysis or static (code
path) analysis with object code.

MaxStackVariableSize: The maximum number of bytes n, where n is
greater than zero, the Real-Time Workshop product allocates for any local
block output variable declared in the code. The product allocates any
variable with a size that exceeds MaxStackVariableSize in global, rather
than local, memory. The default is 4096 bytes.
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You may need to adjust the settings of these variables when working

with models that contain large signals. When a variable exceeds
MaxStackVariableSize, the Real-Time Workshop product places the variable
in global memory space. Similarly, if the accumulated size of variables in
local memory exceeds MaxStackSize, the product places subsequent local
variables in global memory space. The Real-Time Workshop product analyzes
the accumulated size of local variables based on a worst-case scenario without
taking into account that local variables are released after functions return.

Consider the following options for your specific model:

¢ [sit important that you maximize potential for signal storage optimization?
If so, set MaxStackSize appropriately to accommodate the size and number
of signals in your model. This minimizes overflow into global memory space
and maximizes use of local memory. Local variables offer more optimization
potential through mechanisms such as expression folding and buffer reuse.

® [s the accumulated size of local variables exceeding the MaxStackSize
setting? If so, consider setting MaxStackVariableSize to a value that
forces large local variables into the global memory space and helps retain
smaller local variables in local storage.

See “Setting Target Language Compiler Options” on page 26-21 for more
information.
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Signals with Test Points
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A test point is a signal that is stored in a unique location no other signals share
or reuse. See “Working with Test Points” in the Simulink documentation for
information about including test points in your model.

When you generate code for models that include test points, the Real-Time
Workshop build process allocates a separate memory buffer for each test
point. Test points are stored as members of the model B structure.

Declaring a signal as a test point disables the following options for that signal.
This can lead to increased code and data size. You do not lose the benefits of
optimized storage for any other signals in your model.

Signal storage reuse

Enable local block outputs

Reuse block outputs

Eliminate superfluous local variables (Expression folding)

e Minimize data copies between local and global variables

For an example of storage declarations and code generated for a test point,
see “Summary of Signal Storage Class Options” on page 11-16.

If you have a Real-Time Workshop Embedded Coder license, you can specify
that the Real-Time Workshop build process ignore all test points in the model,
allowing optimal buffer allocation, using the “Ignore test point signals”
parameter. Ignoring test points facilitates transitioning from prototyping

to deployment and avoids accidental degradation of generated code due to
workflow artifacts. For more information, see “Ignore test point signals” in
the Real-Time Workshop Reference.
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Interfacing Signals to External Code

The Simulink Signal Properties dialog box lets you interface selected signals
to externally written code. In this way, your hand-written code has access
to such signals for monitoring or other purposes. To interface a signal to
external code, use the Real-Time Workshop tab of the Signal Properties
dialog box to assign one of the following storage classes to the signal:

® ExportedGlobal
® ImportedExtern

® ImportedExternPointer
Set the storage class as follows:

1 In your Simulink block diagram, select the line that carries the signal.
Then select Signal Properties from the Edit menu of your model. This
opens the Signal Properties dialog box. Alternatively, right-click the line
that carries the signal, and select Signal properties from the menu.

2 Select the Real-Time Workshop tab of the Signal Properties dialog box.
3 Select the desired storage class (Auto, ExportedGlobal, ImportedExtern,

or ImportedExternPointer) from the Storage class menu. The next
figure shows ExportedGlobal selected.
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L= signal Properties: SinSig x|
Signal name: ISnSlg

o | conenl Hep | Apoly

4 Optional: For storage classes other than Auto, you can enter a storage type

qualifier such as const or volatile in the Storage type qualifier field.
The Real-Time Workshop product does not check this string for errors;
whatever you enter is included in the variable declaration.

Click Apply.

Note You can also interface test points and other signals that are
stored as members of model B to your code. To do this, your code must
know the address of the model B structure where the data is stored,
and other information. This information is not automatically exported.
The Real-Time Workshop product provides C/C++ and Target Language
Compiler APIs that give your code access to model B and other data
structures. See Chapter 34, “Interacting with Target Application Signals
and Parameters Using the C API” for more information.




Symbolic Naming Conventions for Signals in Generated Code

Symbolic Naming Conventions for Signals in Generated
Code

When signals have a storage class other than Auto, the Real-Time Workshop
product preserves symbolic information about the signals or their originating
blocks in the generated code.

For labeled signals, field names in model B derive from the signal names. In
the following example, the field names model B.sumSig and model B.gainSig
are derived from the corresponding labeled signals in the signal examp
model (shown in figure Signal_examp Model on page 11-2).

/* Block signals (auto storage) */
typedef struct _BlockIO_signal_examp {
real T sumSig; /* '<Root>/Add' */
real T gainSig; /* '<Root>/Gain' */
} BlockIO_signal_examp;

When you clear the Signal Storage Reuse optimization, sumSig is not
part of model B, and a local variable is used for it instead. For unlabeled
signals, model B field names are derived from the name of the source block
or subsystem.

The components of a generated signal label are

¢ The root model name, followed by

¢ The name of the generating signal object, followed by

® A unique name mangling string (if required)

The number of characters that a signal label can have is limited by the
Maximum identifier length parameter specified on the Symbols pane

of the Configuration Parameters dialog box. See “Configuring Generated
Identifiers” on page 20-3 for more detail.

When a signal has Auto storage class, the Real-Time Workshop build process
controls generation of variable or field names without regard to signal labels.
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Summary of Signal Storage Class Options

The next table shows, for each signal storage class option, the variable
declaration and the code generated for Sum (sumSig) and Gain (gainSig)
block outputs of the model shown in figure Signal_examp Model on page 11-2.

Storage Class Declaration Code
Auto In model.c or model.cpp
. . rtb_sumSig = signal_examp_U.In1 +
(VVIth'SlgI}al,Sto¥Tige real T rtb_sumSig; signal_examp_P.Constant_Value;
reuse optimizations rb. sunsSig *=
On) signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_sumSig;
Test point (for In model.h
sumSig only) signal_examp_B.sumSig =
typedef struct signal_examp_U.In1 +
_BlockIO_signal_examp signal_examp_P.Constant_Value;
{ rtb_gainSig =
real_T sumSig; signal_examp_B.sumSig *
} signal_examp_P.Gain_Gain;
BlockIO_signal_examp; signal_examp_Y.Out1 = rtb_gainSig;
In model.c or model.cpp
BlockIO_signal_examp
signal_examp_B;
real_T rtb_gainSig;
ExportedGlobal In model.h
(for sumSig only) sumSig = signal_examp_U.In1 +
extern real_T sumSig; signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *
In model.c or model. cpp signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;
real T sumSig;
real_T rtb_gainSig;
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Storage Class

Declaration

Code

ImportedExtern In model_private.h
sumSig = signal_examp_U.In1 +
extern real_T sumSig; signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *
In model.c or model.cpp signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;
real_T rtb_gainSig;
ImportedExternPointém model private.h

extern real_T *sumSig;

In model.c or model.cpp

real_T rtb_gainSig;

(*sumSig) = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

rtb_gainSig = (*sumSig) *
signal_examp_P.Gain_Gain;

signal_examp_Y.Outl1 = rtb_gainSig;
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Monitoring Signals With the C API
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In this section...

“Using the C API to Tune Parameters and Monitor Signals” on page 11-18

“Using the Target Language Compiler API to Tune Parameters and Monitor
Signals” on page 11-18

Using the C API to Tune Parameters and Monitor
Signals

The Real-Time Workshop product includes a C application program interface
(AP]) for tuning parameters and monitoring signals independent of external
mode. See Chapter 34, “Interacting with Target Application Signals and
Parameters Using the C API” for information.

Using the Target Language Compiler API to Tune
Parameters and Monitor Signals

The Real-Time Workshop product includes support for development of a
Target Language Compiler API for tuning parameters and monitoring signals
independent of external mode. See “Parameter Functions”, “Input Signal
Functions”, and “Output Signal Functions” in the Target Language Compiler
documentation for information.
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® “Introduction” on page 12-2

* “Parameter Objects” on page 12-4

® “Parameter Object Configuration Quick Reference Diagram” on page 12-11
® “Signal Objects” on page 12-12

¢ “Using Signal Objects to Initialize Signals and Discrete States” on page
12-18
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page 12-26

¢ “Customizing Code for Parameter and Signal Objects” on page 12-29
e “Using Objects to Export ASAP2 Files” on page 12-29
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Introduction

Before using Simulink data objects with the Real-Time Workshop product,
read the following:

¢ The discussion of Simulink data objects in the Simulink documentation
® Chapter 10, “Parameter Considerations”

e Chapter 11, “Signal Considerations”

Within the class hierarchy of Simulink data objects, the Simulink product
provides two classes that are designed as base classes for signal and
parameter storage:

e Simulink.Parameter: Objects that are instances of the
Simulink.Parameter class or any class derived from Simulink.Parameter
are called parameter objects.

e Simulink.Signal: Objects that are instances of the Simulink.Signal
class or any class derived from Simulink.Signal are called signal objects.

The RTWInfo properties of parameter and signal objects are used by the
Real-Time Workshop product during code generation. These properties let you
assign storage classes to the objects, thereby controlling how the generated
code stores and represents signals and parameters.

The Real-Time Workshop build process also writes information about the
properties of parameter and signal objects to the model.rtw file. This
information, formatted as Object records, is accessible to Target Language
Compiler programs. For general information on Object records, see the
Target Language Compiler documentation.

The general procedure for using Simulink data objects in code generation
is as follows:
1 Define a subclass of one of the built-in Simulink.Data classes.

® For parameters, define a subclass of Simulink.Parameter.

¢ For signals, define a subclass of Simulink.Signal.
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2 Instantiate parameter or signal objects from your subclass and set their
properties appropriately, from the command line or using Model Explorer.

3 Use the objects as parameters or signals within your model.
4 Generate code and build your target executable.

The following sections describe the relationship between Simulink data
objects and code generation in the Real-Time Workshop product.
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Parameter Obijects

This section discusses how to use parameter objects in code generation.

Configuring Parameter Objects for Code Generation

In configuring parameter objects for code generation, you use the following
code generation and parameter object properties:

¢ The Inline parameters option (see Chapter 10, “Parameter
Considerations”).
e Parameter object properties:

= Value. The numeric value of the object, used as an initial (or inlined)
parameter value in generated code.

= DataType. The data type of the object. This can be any Simulink numeric
data type, including a fixed-point, user-defined, or alias data type.

= RTWInfo.StorageClass. Controls the generated storage declaration
and code for the parameter object.

Other parameter object properties (such as user-defined properties of
classes derived from Simulink.Parameter) do not affect code generation.

Note If Inline parameters is off (the default), the RTWInfo.StorageClass
parameter object property is ignored in code generation.

Effect of Storage Classes on Code Generation for
Parameter Objects

The Real-Time Workshop product generates code and storage declarations
based on the RTWInfo.StorageClass property of the parameter object. The
logic is as follows:

e If the storage class is 'Auto’ (the default), the parameter object is inlined
(if possible), using the Value property.

® For storage classes other than 'Auto’', the parameter object is handled as a
tunable parameter.
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= A global storage declaration is generated. You can use the generated
storage declaration to make the variable visible to your hand-written
code. You can also make variables declared in your hand-written code
visible to the generated code.

= The symbolic name of the parameter object is generally preserved in
the generated code.

See the table in “Controlling Parameter Object Code Generation Using the
Model Explorer” on page 12-7 for examples of code generated for possible
settings of RTWInfo.StorageClass.

Controlling Parameter Object Code Generation with
Typed Commands

In this section, the Gain block computations of the model shown in the next
figure are used as an example of how the Real-Time Workshop build process
generates code for a parameter object.

] Function Block Parameters: Gain | x|

Gain
(Element-wise gain [y = K.*U) or matrix gain (v = K*u ar y = u*K),

Main | Signal Attributes I Parameter Attributes I

Gain:

[k

tulkiplication: IEIement—wise(K.*u) j

Sample time (-1 For inherited):

-1

J QK I Cancel | Help Apply

Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain block.

To configure a parameter object such as Kp for code generation:
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1 Instantiate a Simulink.Parameter object called Kp. In this
example, the parameter object is an instance of the example class
SimulinkDemos.Parameter, which is provided with the Simulink product.

Kp = Simulink.Parameter

Kp =
Simulink.Parameter
Value: 5
RTWInfo: [1x1 Simulink.ParamRTWInfo]
Description: ''
DataType: 'auto'
Min: -Inf
Max: Inf
DocUnits: ''

Complexity: 'real'’
Dimensions: '[1x1]'

Make sure that the name of the parameter object matches the desired
block parameter in your model. This ensures that the Simulink engine can
associate the parameter name with the correct object. In the preceding
model, the Gain block parameter Kp resolves to the parameter object Kp.

2 Set the object properties you need. You can do this by using the Model
Explorer, or you can assign properties by using MATLAB commands, as
follows:

® To specify the Value property, type

Kp.Value = 5.0;

® To specify the storage class of for the parameter, set the
RTWInfo.StorageClass property, for example:

Kp.RTWInfo.StorageClass = 'ExportedGlobal';

The RTWInfo parameters are now

Kp.RTWInfo
Simulink.ParamRTWInfo
StorageClass: 'ExportedGlobal'
Alias: ''
CustomStorageClass: 'Default'’
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CustomAttributes: [1x1
SimulinkCSC.AttribClass_Simulink_Default]

Controlling Parameter Object Code Generation Using
the Model Explorer

If you prefer, you can create and modify attributes of parameter objects
using the Model Explorer. This lets you see all attributes of a parameter in a
dialog box, and alleviates the need to remember and type field names. Do the
following to instantiate Kp and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.

Model Explorer opens or activates if it already was open.
2 Select Base Workspace in the Model Hierarchy pane.
3 Select Simulink Parameter from the Add menu.

A new parameter named Param appears in the Contents pane.

E® Model Explorer

=10 x|
File Edit “iew Tools Add Help
D[ mex[BHc%H0 B 4W|[Enrard
”Search Iby Block Type | Type: IGain | % Search |
todel Higrarchy Contents of: Base Workspace Simulink.Parameter: Param
E--@Simuﬁnkﬁoot Mame | Yalug | DataType | Comple: | alue: |[]
£ 6 Base Warkspace s
- | non_tunable_sin - R Datatype:  auto Urits: I
5----&M0delWorkspace Dimensions: ([0 0] Complexity: lleal—
E....%Conhguralion [Active] B o et =
: nimm: F awirum:
=] @Code far non_tunable_sir " n
I:@Tup Madel —Code generation optian:
: @Simulink.direclow Storage class: |Auto LI
@Adwce for non_tunable_:
Alias: |
Description:
KN — 2
| || Contents | Search Results | Fevert Help Apply
Y

12-7



12 Simulink® Data Obiject Considerations

4 To set Kp.Name in the Model Explorer:
a Click the word Param in the Name column to select it.
b Rename it by typing Kp in place of Param.
¢ Click Return.

5 To set Kp.Value in Model Explorer:

a Select the Value field at the top of the Dialog pane.
b Type 5.0.

¢ Click the Apply button.

6 To set the Kp.RTWInfo.StorageClass in Model Explorer:

a Click the Storage class menu and select ExportedGlobal, as shown in
the next figure.

E® Model Explorer

=10 x|
File Edit ‘iew Tools Add Help
[P smax[BHE%f0 B +8][¢raza]
”Search Iby Block Type | Type: IGain | Search |
Model Hierarchy Contents of: Base Workspace Simulink.Parameter: Kp
E--@Simulink Riaat I Marme I Value' DataType' Comples | Value: |5
ﬁBasaW’orkspace [ kn 5
- | non_tunable_sin Datatype:  auto Urits: I
E----ﬁModelWorkspace Dimenzions: — |[1 1] Complesity: I.eal
E---%Conhguralion [Active] Miri " Masi ™
: inimum: - Swimum:
=] @Code far non_tunable_sir n n
H ;----E@Tup Model —Caode generation optiar
: :----@Simulink.direclow Storage class: |ExporledGInbaI LI
@Adwce for non_tunable_: Aulo
Alias: b

LE. lobal
ImportedE=termn
Description: ImportedE stermPainter -
SirmulinkGlobal

Default [Custom)
BitField [Custom]
Const [Custom)
“olatile [Custam)
Constyalatile [Customn] -

KN — 2
qI ﬂ Contents | Search Results | Bevert Help Apply

b Click Apply.
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The following table shows the variable declarations for Kp and the code
generated for the Gain block in the model shown in the preceding model,
with the Inline parameters and Eliminate superfluous local variables
(Expression folding) check boxes selected (which includes the gain
computation in the output computation). An example is shown for each
possible setting of RTWInfo.StorageClass. Global structures include the
model name (symbolized as model or _model).

StorageClass Generated Variable Declaration
Property and Code
Auto

model Y.Out1 = rtb_u * 5.0;

SimulinkGlobal
struct _Parameters_model {
real T Kp;
}
Parameters_model model P = {
5.0
b
model_Y.Out1 = rtb_u * model P.Kp;
ExportedGlobal

extern real T Kp;
real T Kp = 5.0;

model Y.Out1 = rtb_u * Kp;

12-9
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StorageClass Generated Variable Declaration
Property and Code
ImportedExtern

extern real T Kp;

model Y.Out1 = rtb_u * Kp;

ImportedExternPointer
extern real T *Kp;

model Y.Out1 = rtb_u * (*Kp);

12-10



Parameter Object Configuration Quick Reference Diagram

Parameter Object Configuration Quick Reference Diagram

The next figure shows the code generation and storage class options that
control the representation of parameter objects in generated code.

Kp = Simulink.Parameter; Kp.Value = 5.0;

Ty

REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

Include parameters as fields
[OFF] y = u* (rtP.<2?2?>); in a global structure
(field names based on block names)
REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE
/ = u* (5.0); Use numeric value of )
[Auto] < y e parameter (if possible)
\ const *p <?2?> = &rtP.<2??>[0];
for (i=0; i<N; i++){ Otherwise, include in a
Inline y[i] = u * (p_<???>[i]); constant global structure
Parameters }
\ N J
INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS
oN 3/ j . Includeina I
SimulinkGlobal y = u* (rtP.Kp); global structure
ExportedGlobal y = u* (Kp);
Symbol preserved
|mportedExtern E y = u* (Kp); Unstructured (mUSt be unlque)

storage

ImportedExternPointer y = u* (*Kp);
KEY:

[option] : default for code generation option
<???>: RTW generated symbol for parameter storage field
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Signal Objects

12-12

This section discusses how to use signal objects in code generation. Signal
objects can be used to represent both signal and state data, and behave
similarly to parameter objects, described in “Parameter Objects” on page 12-4.

Configuring Signal Objects for Code Generation

In configuring signal objects for code generation, you use the following code
generation options and signal object properties:

¢ The Signal storage reuse code generation option (see Chapter 11, “Signal
Considerations”).

¢ The Enable local block outputs code generation option (see Chapter
11, “Signal Considerations”).

¢ The Minimize data copies between local and global variables code
generation option (see Chapter 11, “Signal Considerations”).

e The RTWInfo.StorageClass signal object property: The storage classes
defined for signal objects, and their effect on code generation, are the same
for model signals and signal objects (see “Signals Storage Classes” on
page 11-4).

Other signal object properties (such as user-defined properties of classes
derived from Simulink.Signal) do not affect code generation.

Effect of Storage Classes on Code Generation for
Signal Objects

The way in which the Real-Time Workshop product uses storage classes
to determine how signals are stored is the same with and without signal
objects. However, if a signal’s label resolves to a signal object, the object’s
RTWInfo.StorageClass property is used in place of the port configuration
of the signal.

The default storage class is Auto. If the storage type is Auto, the Real-Time
Workshop product follows the Signal storage reuse, Reuse block outputs,
Enable local block outputs, Eliminate superfluous local variables
(Expression folding), and Minimize data copies between local and
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global variables code generation options to determine whether signal objects
are stored in reusable and/or local variables. Make sure that these options
are set correctly for your application.

To generate a test point or signal storage declaration that can interface
externally, use an explicit RTWInfo.StorageClass assignment. For example,
setting the storage class to SimulinkGlobal, as in the following command,
1s equivalent to declaring a signal as a test point.

SinSig.RTWInfo.StorageClass = 'SimulinkGlobal';

Controlling Signal Object Code Generation By Using
Typed Commands

The discussion and code examples in this section refer to the model shown in
the next figure.

1 1 1
D inSig ’{ Gain1 5ig

In1 . Outd
Zain

To configure a signal object, you must first create it and associate it with a
labeled signal in your model. To do this,

1 Define a subclass of Simulink.Signal. In this example, the signal object
1s an instance of the class Simulink.Signal, which is provided with the
Simulink product.

2 Instantiate a signal object from your subclass. The following example
instantiates inSig, a signal object of class Simulink.Signal.

inSig = Simulink.Signal
inSig
Simulink.Signal

RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: "'
DataType: 'auto'
Min: -Inf
Max: Inf
DocUnits: '
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Dimensions: -1

Complexity: 'auto’

SampleTime: -1
SamplingMode: ‘'auto’
InitialvValue: ''

Make sure that the name of the signal object matches the label of the
desired signal in your model. This ensures that the Simulink engine can
resolve the signal label to the correct object. For example, in the model
shown in the above figure, the signal label inSig would resolve to the
signal object inSig.

3 You can require signals in a model to resolve to Simulink.Signal objects.
To do this for the signal inSig, in the model window right-click the signal
line labeled inSig and choose Signal Properties from the context menu.
A Signal Properties dialog appears.

E! Signal Properties: inSig _ 2

Signal name; IinSig

¥ Signal name must resolve to Simulink signal object

Logaing and accessibility I Real-Time Waorkshop | Documentation I
[ Logsignal data [ Test point
—Logging name

I Uze signal name ;I IinSig

—Data

[ Limit data points to last: IEDDD
™ Decimation: |2

OF. | LCancel

Apply |

4 In the Signal Properties dialog box that appears, select the check box
labelled Signal name must resolve to Simulink signal object, and
click OK or Apply.

5 Set the object properties as required. You can do this by using the
Simulink Model Explorer. Alternatively, you can assign properties by using
MATLAB commands. For example, assign the signal object’s storage class
by setting the RTWInfo.StorageClass property as follows.
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inSig.RTWInfo.StorageClass =

'"ExportedGlobal’;

Controlling Signal Object Code Generation By Using

Model Explorer

If you prefer, you can create signal objects and modify their attributes using
Model Explorer. This lets you see and set attributes of a signal in a dialog
box pane, and alleviates the need to remember and type field names. Do the
following to instantiate inSig and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.

Model Explorer opens or activates if it already was open.

2 Select Base Workspace in the Model Hierarchy pane.

3 Select Simulink Signal from the Add menu.

A new signal named Sig appears in the Contents pane.

F& Model Explorer

M =lEd
File Edit Yiew Tools Add Help
D@ s mmX BHE%F fo0 D040 Ay m A
H Search: Ih_u Black Type LI Type: IEam LI Search
Madel Higrarchy Contents of: Base Workspace Simulink.Signal: Sig
E--@_Swfqu\ink Fioot I I I Datalype I Valuel Dime| | D'ata type: |autn LI Units: |
Eace = Sig auto 4 Dimensions: |-1 Caomplexity: | auto ;I
E-ﬂsignal_obis_examp Sample time‘|-1 Sample mode‘l auto ;I
E---ﬁModel Waorkspace ; _D 4 _D ¥
é---%Configurahon [Active) Iirimuim: I-Inf I aximuim: IInf
@Code for signal_objs_exa Initial value: I
L B Bdvice for signal_obis_ey Cade generation option
Storage class:l Auta LI
Aliaz: I
Description:
[ I
1 | »]|| Eentents | Search Results | Fievert Help Ay
&
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4 To set the signal name in Model Explorer, click the word Sig in the Name
column to select it, and rename it by typing inSig followed by Return

in place of Sig.

5 To set the inSig.RTWInfo.StorageClass in Model Explorer, click the
Storage class menu and select ExportedGlobal, as shown in the next

figure.
@ Model Explorer i =] 5]
File Edit View Tools Add Help
[De[smax BHEwf 0@ Dmen][ anmz A
H Search: Iby Black Type j Type: IGain ;I Search
Model Higrarchy Contents of: Base Workspace Simulink.Signal: Sig
E--@S\mu\ink Roat I R I Datalype I Value | Dime| | Data type: Iauto LI Unite: I
&Base Workspace = Sig auto 4 Dimensions: |-1 Complexity: | auto ;I
- Esignal_obis_examp S I__I iy d I n J
£ B Model workspace ér.npe ime: am.pe mode: | auto
%Ennhgurahnn [Bative) Iirimuim; Irlnf I aximuim: IInf
@Code for signal_obijs_exa Initial value: I
L B Bdvice for signal_obis_ey Code generation option
Storage class: | Auto LI

Alias: Ao =
SirmulinkGlobal

Description:

ImportedE «term
ImportedE sternPainter
Default [Custom]
BitField [Custom]
Wolatile (Custom)]
ExportT oFile [Custom)
ImportFromFile [Custom)

e | |
. | || Contents |Sealch Results | Fevert Help Apply

6 Click Apply.

The following table shows, for each setting of RTWInfo.StorageClass, the
variable declaration and the code generated for the inport signal (inSig)

of the current model:

u

In1 .
Zain
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Storage Class | Declaration Code
Auto (with In model.h
storage rtb_Gain1Sig =
optinlizations typedef struct signal_objs_examp_U.inSig *
on) _Externallnputs_signal_ objs_examp_tag signal_objs_examp_P.Gain_Gain;
{
real_T inSig;
}
ExternalInputs_signal_ objs_examp;
Simulink In model.h
Global rtb_GainiSig =
typedef struct signal_objs_examp_U.inSig *
_ExternalInputs_signal_objs_examp_tag signal_objs_examp_P.Gain_Gain;
{
real_T inSig;
}
Externallnputs_signal_objs_examp;
ExportedGlobal | In model.c or model.cpp
rtb_Gain1Sig = inSig *
real T inSig; signal_objs_examp_P.Gain_Gain;
In model.h
extern real T inSig;
ImportedExtern | In model private.h
rtb_Gain1Sig = inSig *
extern real_T inSig; signal_objs_examp_P.Gain_Gain;
ImportedExternPointeodel private.h

extern real T *inSig;

rtb_Gain1Sig = (*inSig) *
signal_objs_examp_P.Gain_Gain;
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Using Signal Objects to Initialize Signals and Discrete

States

12-18

You can use Simulink signal objects to initialize signals and discrete
states with user-defined values for simulation and code generation. Data
initialization increases application reliability and is a requirement of safety
critical applications. Initializing signals for both simulation and code
generation can expedite transitions between phases of Model-Based Design.

For details on simulation behavior, see “Initialization Behavior Summary for
Signal Objects” in the Simulink documentation.

Specifying an Initial Value for a Signal Object

You can use signal objects that have a storage class other than 'auto’ or
'SimulinkGlobal' to initialize

® Discrete states with an initial condition parameter

® Any signals in a model except bus signals and signals with constant sample

time

The initial value is the signal or state value before a simulation takes its
first time step.

Note Initial value settings for signal objects that represent the following
signals and states override the corresponding block parameter initial values if
undefined (specified as []):

¢ Qutput signals of conditionally executed subsystems and Merge blocks

® Block states

To specify an initial value, use the Model Explorer or MATLAB commands to
do the following:

1 Create the signal object.
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Model Explorer

F& Model Explorer ;Iglil

File Edit View Tools | Add Help

|0 @] & B2 @ ML vaiale  cubm ﬂ).[[ﬂﬁ“l‘l’.: .|
[‘\'*5‘] Simulink Parameter  Cer+R 2
Search: Iby Block Type vl Z[ Search
JJ— L;J MPT Parameter m
Madel Hierarchy SR S Base Workspace
Bttt SR = irnulink Signal Crl+5
E'-@S\mu\ink Fioot k Dimensions | Mir| || The base [MATLAE] workspace contains variables that are visible to all
B m £ MPT Signal 5 T o Simulink models. These varables can be used to parameterize certain
i auto ni i
) " > T Stk siacTans model, block and signal parameters.
WHsiaral_iv tH auto {1 Inf
T  Simulink NumericType auto 11 v
T Simulink StructType auta [11] Anf
= Simulink Bus
‘ Configuration Set
Add Cuskom, ., _’I
Fewvert Hel, Appl
Ll F Eent Chrl+E @ 5 ke
Add a Simulink signal obj [;;;] Data D 4

MATLAB Command

S1=Simulink.Signal;

The name of the signal object must be the same as the name of the signal
that the object is initializing. Although not required, consider setting the
Signal name must resolve to Simulink signal object option in the
Signal Properties dialog box. This setting ensures consistency between
signal objects in the MATLAB workspace and the signals that appear in
your model.

Consider using the Data Object Wizard to create signal objects. The Data
Object Wizard searches a model for signals for which signal objects do not
exist. You can then selectively create signal objects for multiple signals
listed in the search results with a single operation. For more information
about the Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation.

2 Set the signal object’s storage class to a value other than 'auto’ or
"SimulinkGlobal’.

Model Explorer
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E® Model Explorer

ol x|
File Edit Yiew Tools Add Help
D tmaxHH<%ffo0 D040 Anmz A
”Search |by Block Type LI Type: |Ennstant LI Search |
tadel Hierarchy Contents of: Base Warkspace Simulink.Signal: 51
i ESimuink Foot | DataTypel Dimensionsl Mir || Data tupe: Iauto j' Units: I =
;““HB&SE Workspace aulo [11] -Inf || Dimensions: |-1 Complesity: I auta hd
- b signal_i
Eslgna_lv auto [111 Inf |} Sample time:|-1 Sample mode:l auto -
adle [ At Minirnirn: Ik I asirnirn: Inf
auta [11] nf
Initial value: I
Code generation aptiar
Storage class: | Auto -
Alias: Auto =
Simulink G lobal |
Dereain:  ExportedGlobal :
ImportedE kterm —
ImportedE stemPointer b
4 | ﬂ hJ | D.eftaull [Custom] 2
BitField [Custom)]
i I I ﬂ Conterts Search Resultz | Yalatile [Custor) —
&

ExportT oFile [Custam]
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MATLAB Command

lrnmmt Ermrn il (74

-

S1.RTWInfo.StorageClass='ExportedGlobal';

3 Set the initial value. You can specify any MATLAB string expression that
evaluates to a double numeric scalar value or array.

Model Explorer

Valid 1.5
[1 2 3]

1+0.5
Invalid uint(1)

MATLAB Command

foo 1.5;
s1.InitialValue

foo = '1.5";
s1.InitialValue

‘foo';

‘foo';

If necessary, the Simulink engine converts the initial value to ensure
type, complexity, and dimension consistency with the corresponding block
parameter value. If you specify an invalid value or expression, an error
message appears when you update the model.

Model Explorer
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5 Model Explorer =13l x|
File Edit Yiew Tools Add Help
D@ tmeaxEHc%HAF00 B0 45| nmz A
JJ Search: Iby Black Type LI Type: ICDnstant LI Search |
todel Hierarchy Contents of. Base Workspace Simulink Signal: 51
E--@Slmuhnk Ront I Mame | DataType | Dimensions | Mir|| Dta type: Iauto vI Uriits: I =
ﬁBase Warkspace B tout 4 . Dimenzions: |-1 Complesity: I auto -
- Wbl signal i
Emgna_w H o . Sample time:|-1 Sample mode:l auta =
["’7"’] £ auta o1l At Minimum:  |-nf I aximuim: Inf
[4] c2 aulto R} anflf
1 K aulo 1 Inf Initial value: IE
[Il‘.‘] K2 aula 1] Anf Caode generation option:
m= ] auta <l Inf Starage class:l ExpartedGlobal ;I
Blias: I
Description:
| _lLl
7l | | | >
'h| | _}I Conterts | Search Resulls | Hesi il | Apoly |
Add a Skateflow event A

MATLAB Command

S1.InitialValue='0.5"

The following example shows a signal object specifying the initial output of
an enabled subsystem.
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Enable

Laadhand In1 . Outl
Do Gain Initial Output = ]
e | €
Enable St
Ts=0.1 15 I e
Phase Delay = 10 samples L, EI
Scope
\ 4 p ..
1+ n .
Pin1 outl R
+++ ‘0 ~~~~
Sine Wave ‘ .
Amplitude = 1 Enabled
Period = 10 samples Subsystem
Ts=0.1

Maodel predoad function:

g = Simulink.Signal;
g RTWinfo.StorageClass ="ExportedGlobal’;
g InitialValue="4.5";

Signal s is initialized to 4.5. Note that to avoid a consistency error, the initial
value of the enabled subsystem’s Outport block must be [ ] or 4.5.

Signal Object Initialization in Generated Code

The initialization behavior for code generation is the same as that for model
simulation with the following exceptions:

e RSim executables can use the Data Import/Export pane of the
Configuration Parameters dialog box to load input values from MAT-files.
GRT and ERT executables cannot load input values from MAT-files.
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® The initial value for a block output signal or root level input or output
signal can be overwritten by an external (calling) program.

e Setting the initial value for persistent signals is relevant if the value 1s
used or viewed by an external application.

For details on initialization behavior for different types of signals and discrete
states, see “Initialization Behavior Summary for Signal Objects” in the
Simulink documentation.

When you initialize Simulink signal objects in a model during code generation,
the corresponding initialization statements are placed in model.c or
model.cpp in the model’s initialize code.

For example, consider the demo model rtwdemo_sigobj iv.

[nn ] q I

Pulse
Generator Scope
I ’

51 In1 Out1 = e X2 X2 =3

In1
= | E I Data St Data St Gai =
IV=4.5 Enabled V=20 a arit ore ata store ain | y=_3.0

Subsystem
(state X1 inside) _
X2 | (=35
Data Store
Memory

If you create and initialize signal objects in the base workspace, the Real-Time
Workshop product places initialization code for the signals in the file
rtwdemo_sigobj iv.c under the rtwdemo_sigobj iv_initialize function,
as shown below.

/* Model initialize function */

void rtwdemo_sigobj_iv_initialize(boolean_T firstTime)
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/* exported global signals */
S3 = -3.0;

S2 = -2.0;

/* exported global states */
X1 = 0.0;
X2 = 0.0;

/* external inputs */

S1 = -4.5;

The following code shows the initialization code for the enabled subsystem’s
Unit Delay block state X1 and output signal S2.

void MdlStart(void) {

/* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */
X1 = aail;

/* Start for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* virtual outports code */
/* (Virtual) Outport Block: '<S2>/0Quti1' */

82 = aa2;

Also note that for an enabled subsystem, such as the one shown in the
preceding model, the initial value is also used as a reset value if the
subsystem’s Outport block parameter Output when disabled is set
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to reset. The following code from rtwdemo_sigobj_iv.c shows the
assignment statement for S3 as it appears in the model output function
rtwdeni_sigobj_iv_output.

/* Model output function */

static void rtwdemo_sigobj_iv_output(void)

{

/* Disable for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* (Virtual) Outport Block: '<S2>/0utl1' */
82 = aa2;

Tunable Initial Values

If you specify a tunable parameter in the initial value for a signal object, the
parameter expression is preserved in the initialization code in model . c.

For example, if you configure parameter df to be tunable for model signal iv
and you initialize the signal object for discrete state X1 with the expression
df*2, the following initialization code appears for signal object X1 in
signal_iv.c.

void MdlInitialize(void) {
/* InitializeConditions for UnitDelay: '<Root>/Unit Delay X1=2' */

X1 = (tunable_param_P.df * 2.0);
}

For more information about the treatment of tunable parameters in generated
code, see Chapter 10, “Parameter Considerations”.
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Resolving Conflicts in Configuration of Parameter and

Signal Objects

& Model Explorer

This section describes how to avoid and resolve certain conflicts that can arise
when using parameter and signal objects.

Parameters

As explained in Chapter 12, “Simulink Data Object Considerations” and
“Using the Model Parameter Configuration Dialog Box” on page 10-11, two
methods are available for controlling the tunability of parameters. You can

¢ Define them as Simulink.Parameter objects in the MATLAB workspace

e Use the Model Parameter Configuration dialog box

The next figures show how you can use each of these methods to control

the tunability of parameter Kp. The first figure shows Kp defined as

Simulink.Parameter in the Model Explorer. You control the tunability of Kp

by specifying the parameter’s storage class.

=
File Edit wiew Tools Add Help
D@ tmax[HH< %770 D0 45| A mz A
H Search: Iby Black Type j Type: IGain j % Search
Model Hierarchy Contents of: Base Workspace Simulink_Parameter: Kp
E--@S\mulink Fioot emm DiataT upe Walle: |3 =
1 Base Workspace 4] Data tupe: Iauln Units: I
(2 WA simulink i Dimensions‘|[1 1] Complexit; '|leal
-ﬂsignals_examp : b
Minirum: I-Inf b asimuim: IInf
—Code generation option:
Storage class'l ExportedGlobal LI
Aliaz: |
Description:
| i =
I | || Msnints Revert Help | Apply |

SN

Parameter Object Kp with Auto Storage Class in Model Explorer
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The next figure shows how you can use the Model Parameter Configuration
dialog box to specify a storage class for numeric variables in the MATLAB
workspace.

«): Model Parameter Configuration: signals_examp e |E||i|
rDescription

Define the global ftunable) parameters forvour model. These parameters affect:

1. the simulation by providing the ability to tune parametars during execution, and

2. the generated code by enabling access to parameters by other modules.
rSource list Glabal {tunable) parameters

MATLAB workspace j Mame Storage class Starage type qualifier

1|ip ExporedGlohal = =]
Name
1|Kp

Refresh list | Add to table ==| [R= | Remove |

Ready |T| Cancel | Help | Apply |

Parameter Kp Defined with SimulinkGlobal Storage Class

Note The MathWorks™ recommends that you not use both methods for
controlling the tunability of a given parameter. If you use both methods and
the storage class settings for the parameter do not match, an error results.

Signals and Block States

If a signal is defined in the Signal Properties dialog box and a signal object of
the same name is defined by using the command line or in the Model Explorer,
the potential exists for ambiguity when the Simulink engine attempts to
resolve the symbol representing the signal name. One way to resolve the
ambiguity is to specify that a signal must resolve to a Simulink data object. To
do this, select the Signal name must resolve to Simulink signal object
option in the Signal Properties dialog box. When you do this, you no longer
can specify the Storage class property in the Real-Time Workshop pane of
the Signal Properties dialog box, as the next figure shows.
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=] signal Properties: Sinsig x|
Signal name: ISnSlg
[v iSignal name must resolve to Simulink signal object :

Logging and accessbiity  Real-Time Workshop | Documentation |

Package: I___ None — 7] Refresh |

gKlgancel Help Apply

As the preceding figure shows, the Storage class menu is disabled because it
1s up to the SinSig Simulink.Signal object to specify its own storage class.

The signal and signal objects SinSig both have SimulinkGlobal storage class.
Therefore, no conflict arises, and SinSig resolves to the signal object SinSig.

Note The rules for compatibility between block states/signal objects are

identical to those given for signals/signal objects.




Customizing Code for Parameter and Signal Objects

Customizing Code for Parameter and Signal Objects
You can influence the treatment of parameter and signal objects in generated

code by using TLC to access fields in object records in model . rtw files. For
details on doing this, see the Target Language Compiler documentation.

Using Objects to Export ASAP2 Files

The Real-Time Workshop product provides an interface for exporting ASAP2
files, which you customize. For details, see Chapter 35, “Generating Model
Information for Host-Based ASAP2 Data Measurement and Calibration”.
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® “About Enumerated Data Types” on page 13-2

e “Default Code for an Enumerated Data Type” on page 13-3
¢ “Enumerated Type Safe Casting” on page 13-4

¢ “Overriding Default Methods (Optional)” on page 13-5

e “How emlc Works with Enumerated Types” on page 13-9

* “Enumerated Type Limitations” on page 13-10
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About Enumerated Data Types

Enumerated data is data that is restricted to a finite set of values. An
enumerated data type is a MATLAB class that defines a set of enumerated
values. Each enumerated value consists of an enumerated name and an
underlying integer which the software uses internally and in generated code.
The following is a MATLAB class definition for an enumerated data type
named BasicColors, which is used in all examples in this section.

classdef (Enumeration) BasicColors < Simulink.IntEnumType
enumeration
Red(0)
Yellow(1)
Blue(2)
end
end

For information about enumerated data types and their use in Simulink
models, see “Using Enumerated Data” in the Simulink documentation. For
information about enumerated data types in Stateflow charts, see “Using
Enumerated Data in Stateflow Charts”.
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Default Code for an Enumerated Data Type

By default, enumerated data types in generated code are defined in the
generated header file model types.h for the model. For example, the default

code for BasicColors, which is defined in the previous section, appears as
follows:

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {

Red = 0, /* Default value */
Yellow = 1,
Blue = 2,

} BasicColors;

#endif
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Enumerated Type Safe Casting

When code generated for a Simulink Data Type Conversion block or a
Stateflow block casts data to an enumerated type, and the block’s Saturate
on integer overflow option is selected, the cast uses a safe-cast function.
The following code shows a safe-cast function for BasicColors:

static int32_T ETO08_safe_cast_to_BasicColors(int32_T input)

{
int32_T output;
/* Initialize output value to default value for BasicColors (Red) */
output = 0;
if ((input >= 0) && (input <= 2)) {
/* Set output value to input value if it is a member of BasicColors */
output = input;
}
return output;
}

The cast fails if the value to be cast does not correspond to one of the
enumerated values in the enumerated type. When a safe cast fails, the value
returned is the underlying integer of the enumerated type’s default value. The
above code reflects this default for BasicColors. See “Specifying a Default
Enumerated Value” in the Simulink documentation for more information.

When a block’s Saturate on integer overflow option is cleared, and the
block casts to an enumerated type, the resulting code does not use safe casting.
The code is therefore more efficient, but is more vulnerable to runtime errors.
No warning about the lack of safe casting appears during code generation.
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Overriding Default Methods (Optional)

Every enumerated class has four associated static methods, which it inherits
from Simulink.IntEnumType. You can optionally override any or all of
these static methods to customize the behavior of an enumerated type. The
methods are:

e getDefaultValue — Returns the default value of the enumerated data
type.

® getDescription — Returns a description of the enumerated data type.

® getHeaderFile — Specifies a file where the type 1s defined for generated
code.

e addClassNameToEnumNames — Specifies whether the class name becomes
a prefix in code.

The first of these methods, getDefaultValue, is relevant to both simulation
and code generation, and is described in “Specifying a Default Enumerated
Value” in the Simulink documentation. The other three methods are relevant
only to code generation, and are described in this section. To override any of
the methods, include a customized version of the method in the enumerated
class definition’s methods section. If you do not want to override any default
methods, omit the methods section entirely. The following table summarizes
the four methods and the data to supply for each one:

Method Purpose Default Return Custom Return

getDefaultValue Returns the default | The lexically Any enumerated
value for the class, first value in the value in the class.
which must be an enumeration. See “Instantiating
instance of the class. an Enumerated

Type”.

getDescription Returns a string Y Any string that
containing a MATLAB accepts.
description of the
enumerated class.

13-5



1 3 Enumerated Data Type Considerations

13-6

Method Purpose Default Return Custom Return
getHeaderFile Returns a string Y The name of the file
containing the name that contains the
of the header file enumerated type
definition.
addClassNameToEnumNames | Returns a boolean false true or false

value indicating
whether to prefix
the class name in
generated code

Specifying a Description
To specify a description for an enumerated data type, include the following
method in the enumerated class’s methods section:

function retVal = getDescription()

% GETDESCRIPTION Optional string to describe the data type.
retVal = ’description’;

end

Substitute any legal MATLAB string for description. The generated code
that defines the enumerated type will include the specified description.

Specifying a Header File
To prevent the declaration of an enumerated type from being embedded in the

generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function retVal = getHeaderFile()

% GETHEADERFILE File where type is defined for generated code.

% If specified, this file is #included where needed in the code.
% Otherwise, the type is written out in the generated code.
retVal = 'filename';

end
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Substitute any legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in model_types.h with a #include statement like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data
type.

Prefixing Class Names

By default, enumerated values in generated code have the same names that
they have in the enumerated class definition. Alternatively, the code can
prefix every enumerated value in an enumerated class with the name of

the class. This technique can be useful for preventing identifier conflicts or
improving the clarity of the code. To specify class name prefixing, include the
following method in an enumerated class’s methods section:

function retVal = addClassNameToEnumNames()

% ADDCLASSNAMETOENUMNAMES Control whether class name is added as
a prefix to enumerated names in the generated code.

By default the code does not use the class name as a prefix.
retvVal = boolean;

end

o°

o°

Replace boolean with true to enable class name prefixing, or false to
suppress prefixing without having to delete the method itself. If boolean
1s true, each enumerated value in the class appears in generated code as
EnumTypeName _EnumName. For BasicColors, which was defined in “About
Enumerated Data Types” on page 13-2, the data type definition with class
name prefixing looks like this:

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
BasicColors_Red = 0,
BasicColors_Yellow = 1,
BasicColors_Blue = 2,

} BasicColors;

/* Default value */
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#endif

In this example, the enumerated class name BasicColors appears as a prefix
for each of the enumerated names. The definition is otherwise the same as
it would be without name prefixing.
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How emlc Works with Enumerated Types

The emlc command generates code for enumerated data types supported
by the Embedded MATLAB subset. The subset supports two integer-based
enumerated types:

¢ Enumerated types based on Simulink.IntEnumType (available with a
Simulink license)

Use enumerated types based on Simulink.IntEnumType with emlc

when generating C executables or library code from Embedded
MATLAB-compliant M-code. For information about defining enumerated
types based on Simulink.IntEnumType, see “Defining an Enumerated Data
Type” in the Simulink documentation.

Simulink.IntEnumType provides four static methods that you can override
in your type definition to customize the behavior of enumerated data

for simulation and code generation. To learn about these methods, see
“Overriding Default Methods (Optional)” on page 13-5.

¢ Enumerated types based on int32

Use enumerated types based on int32 with emlc when generating
C-MEX functions from Embedded MATLAB-compliant M-code, for rapid
prototyping and verification of generated C code within MATLAB.

You can also use this enumerated type when generating C code with
emlc, but int32 does not provide methods for customizing the behavior of
enumerated data. For information about defining enumerated types based
on int32, see “Using Enumerated Data in Embedded MATLAB Compliant
M-Code” in the Embedded MATLAB documentation.
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Enumerated Type Limitations

® Generated code does not support logging enumerated data.
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Introduction

For certain block types, the Real-Time Workshop product lets you control how
block states in your model are stored and represented in the generated code.
Using the State Attributes tab of a block dialog box, you can:

¢ Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that states be
stored in locations declared by externally written code.

e Assign symbolic names to block states in generated code.

Block State Storage

The discussion of block state storage in this section applies to the following
blocks:

® Discrete Filter

® Discrete State-Space

® Discrete-Time Integrator

® Discrete Transfer Function

® Discrete Zero-Pole

® Memory
